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Abstract

In this thesis we present main features of Bose-Einstein condensates (BEC) in disor-

dered potentials using the mean-field approach. Perturbation theory was applied to

a BEC with an arbitrary two-body interaction potential and a disorder with an arbi-

trary correlation function. In particular, we have considered systems with two differ-

ent cylindrically-symmetric physical features: anisotropic dipolar interaction and disorder

with the anisotropic correlation function, which were afterwards combined.

In the first chapter we give a general introduction to the topics. The second chapter

deals with the perturbation calculation of relevant physical quantities, such as condensate

density, superfluid density, and sound velocity. The first-order perturbation theory is then

applied to the case of a dipolar interaction with anisotropic Lorentz-correlated disorder

in the third chapter. The fourth chapter summarizes the results obtained in the thesis

and lists research topics for further study. Appendices A and B give technical details on

calculation presented throughout the thesis.
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Chapter 1

Introduction

Bose-Einstein Condensate (BEC) is a state of matter of a quantum gas of bosons with

a large fraction occupying the lowest energy state (ground state). It is a consequence of

quantum statistics, i.e. the fact that bosons are indistinguishable, and permuting them

does not produce a different state. This was first noticed by the Indian physicist Satyendra

Nath Bose in 1924, whose paper [1] on massless light particles (photons) was generalized

by Albert Einstein to the case of massive particles [2]. In that paper, Einstein predicted

existence of a critical temperature Tc at which a number of particles in the ground state

becomes of the same order as the total number of particles, which is now designated as a

critical temperature for a Bose-Einstein condensation phase transition.

In 1937 a superfluid phase of 4He was found at 2.17K [3, 4]. Its frictionless super-

fluid motion was connected to BEC [5, 6, 7]. Theoretical study of BECs continued by

introducing contact interaction in terms of the s-wave scattering length [8, 9], enabling

approximation of all short-range interactions by an effective contact interaction. An ideal

BEC in a harmonic trap was also considered [10].

In the 1980s a laser cooling technique was developed, allowing experiments at the

temperature of µK range. Finally, in 1995 the first BEC was experimentally observed in

dilute vapours of rubidium [11] and sodium [12]. This was culmination of 70 years of the

development of various advanced cooling and measurement techniques.

Atoms such as chromium (52Cr) [23] and rubidium (87Rb) [24], which have strong

magnetic dipole moment and therefore exhibit long-range interaction, have been Bose-

condensed recently. There are also efforts to Bose-condense molecules with a strong electric

dipole moment, namely 41K87Rb [25].

Bose condensates in random disordered potentials were studied in the case of contact

interaction [13, 14, 15, 16, 17, 18], as well as for systems with a dominant dipolar interaction

[19]. The disorder usually appears as unwanted in wire traps [27, 28], but can be also

controlled and tuned using laser speckles [26]. The study of the effect of disorder is now
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1. INTRODUCTION

a major research topic.

In this thesis we study BEC in a box potential with disorder using the mean-field

theory, i.e. Gross-Pitaevskii equation, for dipolar interaction with Lorentz-correlated dis-

order.

1.1 Dilute Bose gases

Interparticle potential is in general a many-variable function, depending on the position,

spin-states, etc. of all particles. However, when considering dilute systems, where the

characteristic interaction distance r0 is much smaller than the average interparticle dis-

tance n−1/3, interaction potential can be represented as a sum of two-body potentials,

neglecting simultaneous interaction of three or more particles.

For isotropic interactions in the low energy regime, a wave function of two scattered

particles, for r � r0, is characterized by the s-wave scattering length a, a parameter

independent of energies. Therefore, long-ranged1 properties of systems are significantly

influenced by short-range isotropic interaction2 only through the value of the scattering

length a.

The Hamiltonian of the system of particles interacting with a potential V (r′− r) in an

external potential U(r, t) is given by

Ĥ(t) =

∫
d3r

(
~2

2m
∇Ψ̂†(r)∇Ψ̂(r) + U(r, t)Ψ̂†(r)Ψ̂(r)

)

+
1

2

∫
d3r d3r′Ψ̂†(r)Ψ̂†(r′)V (r′ − r)Ψ̂(r′)Ψ̂(r) .

Here, Ψ̂†(r) and Ψ̂(r) are creation and annihilation Bose field operators satisfying com-

mutation relations

[
Ψ̂(r), Ψ̂†(r′)

]
= δ(r− r′) ,

[
Ψ̂(r), Ψ̂(r′)

]
= 0 . (1.1)

In the Heisenberg picture we have time-dependent field operators and an equation

governing their time evolution:

Ψ̂(r, t) = Û †(t)Ψ̂(r)Û(t),

i~ ∂
∂tΨ̂(r, t) = Û †(t)

[
Ψ̂(r), Ĥ(t)

]
Û(t)

=
(
− ~2

2m∇
2 + U(r, t) +

∫
d3r′Ψ̂†(r′, t)V (r′ − r)Ψ̂(r′, t)

)
Ψ̂(r, t) .

(1.2)

1Compared to r0
2 With a� n−1/3
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Let Ĥ1 be one-particle Hamiltonian with potential U(r), let φi(r) be its eigenfunctions,

and âi corresponding annihilation operators in the Fock space.

At T = 0 the system is condensed in the global ground state, which is not known,

because, due to interactions, it cannot be constructed in terms of one-particle ground

states, unlike for the ideal gas. However, for weak interaction, it is expected that the

ground state fraction 〈â†0â0〉 = n0 is still large, making the approximation â†0 ≈ â0 ≈
√
n0

plausible (Bogoliubov approximation). This justifies an expansion Ψ̂ = Ψ + δΨ̂, where Ψ

is a classical field (of the order of
√
n0φ0) and δΨ̂ is small quantum correction.

Neglecting completely quantum fluctuations leads to a time-dependent Gross-Pitaevskii

equation:

i~
∂Ψ(r, t)

∂t
=

(
− ~2

2m
∇2 + U(r, t) +

∫
d3r′V (r′ − r)Ψ∗(r′, t)Ψ(r′, t)

)
Ψ(r, t) . (1.3)

For a time-independent potential U(r) we assume a variable-separated solution

Ψ(r, t) = e−i
µ
~ tψ(r) ,

where µ is a chemical potential (ground-state energy). This leads to the time-independent

Gross-Pitaevskii equation for the ground state ψ(r):(
− ~2

2m
∇2 + U(r)− µ+

∫
d3r′V (r′ − r)ψ∗(r′)ψ(r′)

)
ψ(r) = 0 . (1.4)

1.2 Superfluid velocity

At zero temperature the system will be in its ground state, and which will be superfluid,

according to the Landau criterion of superfluidity. In order to calculate the superfluid

velocity, we will first consider a homogenous case and then generalize it.

For the homogeneous case (without the external potential) (1.3) becomes

i~
∂Ψ(r, t)

∂t
=

(
− ~2

2m
∇2 +

∫
d3r′V (r′ − r)Ψ∗(r′, t)Ψ(r′, t)

)
Ψ(r, t) . (1.5)

If Ψ(r, t) is the solution of Eq. (1.5) then so will be the function

Ψ′(r, t) = Ψ(r− vSt, t) e
i
~

(
mvSr−

mv2S
2
t

)
. (1.6)

This solution corresponds to a fluid moving uniformly with velocity vS . Now one can
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1. INTRODUCTION

write a total phase factor of a moving Bose condensate as:

S(r, t) =
1

~

[
mrvS −

(
mv2

S

2
+ µ

)
t

]
. (1.7)

In general, having some potential U(r, t), one can still calculate the superfluid velocity

using the formula

vS(r, t) =
~
m
∇S(r, t). (1.8)

On the other hand, multiplying Eq. (1.3) by Ψ∗ and subtracting the complex conjugate

of the result gives

i~
∂n(r, t)

∂t
= − ~2

2m
∇ [Ψ∗(r, t)∇Ψ(r, t)−Ψ(r, t)∇Ψ∗(r, t)] (1.9)

and using the continuity equation one can identify

j(r, t) =
~

2im
[Ψ∗(r, t)∇Ψ(r, t)−Ψ(r, t)∇Ψ∗(r, t)] = n

~
m
∇S(r, t) , (1.10)

which is consistent with Eq. (1.8).

1.3 Hydrodynamical approach

The continuity equation for a BEC system is given by

∂n

∂t
+∇(vSn) = 0 . (1.11)

If we calculate partial derivative with respect to the time of the Eq. (1.7), we obtain

~
∂S

∂t
+
mv2

S

2
+ µ = 0 .

Similarly for the superfluid velocity, one can switch to the general case, by taking the

chemical potential to be locally dependent on the fluid density, and adding the external

potential to the equation. This is valid when the density and the superfluid velocity

are slowly varying in space and time. Taking the gradient of the result gives the Euler

equation:

m
∂vS
∂t

+∇
(
mv2

S

2
+ µ(n) + U

)
= 0 . (1.12)
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Chapter 2

BEC in disordered potentials

We now consider a system in a random, time-independent, disordered potential U(r). The

exact form of the potential is unknown, and it is described only through its statistical

properties:

〈U(r)〉 = 0 , (2.1)〈
U(r)U(r′)

〉
= R(r− r′) , (2.2)

Here 〈·〉 denotes averaging with respect to different disorder realizations i.e. average over

an ensemble. However we will assume that spatial averaging of any quantity over distances

much larger than the healing length1 ξ and the characteristic disorder correlation length2

σ coincides with the above averaging.

This is a plausible assumption since the disorder correlation is negligible on distances

much larger then σ, and the wave-function’s response to disorder is negligible over distances

much larger then σ + ξ. Therefore, any quantity that is locally dependent on U and ψ

should satisfy the above assumption3. We will use this to redefine the condensate density

and the sound velocity in a suitable way.

We will often need to perform Fourier transformation, which we define as:

f(k) =

∫
d3r e−ikrf(r), (2.3)

f(r) =

∫
d3k

(2π)3
eikrf(k). (2.4)

1Healing length is a characteristic distance at which BEC properties are no longer influenced by a

fluctuation in the potential. It is given by ξ2 = ~2
2mng

.
2At distances much larger then σ the disorder correlation becomes negligible.
3For long-range interactions ψ is not only locally dependent on U because of the interaction term in

the GP equation. Then, however, the term can be separated into the near field and the far field, and
the latter can be approximated by averaged quantities (in the same way the condensate density is defined
below), making the assumption self-consistent.

5



2. BEC IN DISORDERED POTENTIALS

Using this definition, we see that

〈
U(k)U(k′)

〉
=

∫ ∫
d3r d3r′ e−i(kr+k′r′)R(r− r′)

= (2π)3δ(k + k′)R(k′) . (2.5)

2.1 Perturbative solution

Taking the disorder U(r) (hence R(r)) small, it is possible to solve the GP equation (1.4)

perturbatively. In order to do so, we expand the condensate wave function in a series of

terms proportional to powers in U :

ψ(r) = ψ0 + ψ1(r) + ψ2(r) + . . . , (2.6)

where ψ0 is a solution of the clean (no disorder) case. The system is homogeneous and

the solution can be taken to be real, so, due to homogeneity, ψ0 is position-independent.

Substituting Eq. (2.6) into Eq. (1.4), we obtain:

• 0th order equation:

−µψ0 + ψ3
0

∫
d3r′V (r′) = 0 ,

ψ2
0 =

µ

V (k = 0)
. (2.7)

• 1st order equation:(
− ~2

2m
∇2 − µ

)
ψ1(r) + U(r)ψ0 + ψ2

0

∫
d3r′V (r′ − r)(2ψ1(r′) + ψ1(r)) = 0 .

Its Fourier transform has a form(
~2k2

2m
− µ

)
ψ1(k) + U(k)ψ0 + ψ2

0 (2V (k)ψ1(k) + V (k = 0)ψ1(k)) = 0 ,

yielding the solution

ψ1(k) = − ψ0U(k)
~2k2
2m + 2ψ2

0V (k)
. (2.8)

• 2nd order equation:(
− ~2

2m
∇2 − µ

)
ψ2(r) + U(r)ψ1(r)

+ψ0

∫
d3r′V (r′ − r)

(
2ψ0ψ2(r′) + ψ0ψ2(r) + 2ψ1(r)ψ1(r′) + ψ2

1(r′)
)

= 0 ,

6



its Fourier transform (simplified using Eq. (2.7))

~2k2

2m
ψ2(k) + 2ψ2

0V (k)ψ2(k)

+

∫
d3k′

(2π)3

(
U(k− k′)ψ1(k′) + ψ0(2V (k′) + V (k))ψ1(k′)ψ1(k− k′)

)
= 0 ,

and the solution

ψ2(k) = −
∫

d3k′

(2π)3

U(k− k′)ψ1(k′) + ψ0(2V (k′) + V (k))ψ1(k′)ψ1(k− k′)
~2k2
2m + 2ψ2

0V (k)
. (2.9)

The perturbative procedure can be continued to higher orders straightforwardly.

2.2 Order parameter and condensate depletion

The order parameter is usually defined as an off-diagonal long-range (ODLR) element of

the one-particle density matrix. In this case ψ is a real, so

ρ(r, r′) =
〈
ψ(r)ψ(r′)

〉
. (2.10)

Choosing appropriately the volume V0 that satisfies the conditions for switching from

ensemble to spatial averaging, and letting r′ − r be much larger then the volume’s linear

dimensions yields:

〈
ψ(r)ψ(r′)

〉
≈ 1

V 2
0

∫
V0

d3r1d
3r2

〈
ψ(r + r1)ψ(r′ + r2)

〉
(2.11)

=
〈
〈ψ(r)〉

〈
ψ(r′)

〉〉
(2.12)

= 〈ψ(r)〉2 . (2.13)

In the first line, Eq. (2.11), we have a spatial average of 〈ψ(r)ψ(r′)〉 over a small (compared

to r− r′) volume V0, which is approximately the same as 〈ψ(r)ψ(r′)〉. In the second line,

Eq. (2.12), we use the assumption that spatial and disorder averages coincide.

We define the condensate density as

n0 = 〈ψ(r)〉2 = ψ2
0 + 2ψ0 〈ψ2〉+ . . . , (2.14)

taking into account that the total fluid density is the diagonal part of the density matrix,

n =
〈
ψ(r)2

〉
= ψ2

0 + 〈ψ1(r)ψ1(r)〉+ 2ψ0 〈ψ2(r)〉+ . . . , (2.15)

7



2. BEC IN DISORDERED POTENTIALS

the condensate depletion can be expressed as

n− n0 =
〈
ψ(r)2

〉
− 〈ψ(r)〉2 = 〈ψ1(r)ψ1(r)〉+ . . . .

After expressing ψ1(r) using its Fourier transform, i.e. Eq. (2.8), the previous expression

goes to

n− n0 =

∫
d3k

(2π)3
eikr

∫
d3k′

(2π)3

〈
ψ1(k′)ψ1(k− k′)

〉
=

∫
d3k

(2π)3
eikr

∫
d3k′

(2π)3

ψ2
0 〈U(k′)U(k− k′)〉[

~2k′2
2m + 2ψ2

0V (k′)
] [

~2(k−k′)2
2m + 2ψ2

0V (k− k′)
]

= n

∫
d3k

(2π)3

R(k)[
~2k2

2m + 2nV (k)
]2 + . . . , (2.16)

where in the last line we have used Eq. (2.5).

2.3 Equation of state

Substituting Eqs. (2.7)-(2.9) into Eq. (2.15) and solving it for µ by substituting the zeroth

order solution into the first order one (proportional to R), gives:

µb = nV (k = 0)−
∫

d3k

(2π)3

~2k2
2m R(k)[

~2k2
2m + 2nV (k)

]2 . (2.17)

If the density of the system is equal to 0, i.e. there are no particles in the system, the

energy needed for a particle to be added is also 0, so µ(n = 0) = 0. In the zeroth order this

is automatically true, but for higher orders we have to renormalize the chemical potential

using this condition,

µ(n) = µb(n)− µb(0) = µb +

∫
d3k

(2π)3

R(k)
~2k2
2m

.

This gives the renormalized expression for the equation of state

µ = nV (k = 0) + 4n

∫
d3k

(2π)3

V (k)R(k)
(
~2k2
2m + nV (k)

)
~2k2
2m

[
~2k2
2m + 2nV (k)

]2 + . . . . (2.18)

For calculating the speed of sound we will need a derivative of this expression with respect

8



to n, which we give here:

∂µ

∂n
= V (k = 0) + 4

∫
d3k

(2π)3

~2k2

2m R(k)V (k)[
~2k2

2m + 2nV (k)
]3 + . . . . (2.19)

2.4 Superfluidity

Without disorder, at T = 0, the whole system is superfluid. By introducing weak disorder

and moving it with the velocity v, some part of the fluid will be moving together with it.

The normal (non-superfluid) component of the fluid nN is defined as a part that moves

with disorder, while the superfluid component nS is defined as the fraction of the system

that moves with a superfluid velocity k′S . Using the total fluid velocity ktot and the

expressions for kinetic energy and momentum of the fluid we will obtain both densities

and the change in the superfluid velocity due to disorder.

In the coordinate system in which disorder is moving with velocity v, the Gross-

Pitaevskii equation takes the following time-dependent form:[
− ~2

2m
∇2

r + U(r− vt) +

∫
d3r′V (r− r′)Ψ∗r(r

′, t)Ψr(r
′, t)

]
Ψr(r, t) = i~

∂Ψr(r, t)

∂t
.

(2.20)

We search for its solution by perturbing the boosted solution without disorder, Eq. (1.6):

Ψr(r, t) = eikSre
− i

~

(
µ+

~2k2S
2m

)
t︸ ︷︷ ︸

ψe

(ψ0 + ψr1(r, t) + . . .)︸ ︷︷ ︸
ψ

. (2.21)

Without disorder (U = 0) this reduces to the ordinary real solution (in the rest frame),

ψ0 =
√
n, boosted with the wavevector kS , and all corrections are equal to zero. Here µ

denotes the chemical potential in the rest frame of the superfluid.

By performing a change of variables:

r = x + vt, Ψ(x, t) = Ψr (r(x, t), t) , ∇rΨr = ∇Ψ ,

∂Ψr(r, t)

∂t
=
∂Ψ(x, t)

∂t
−∇rΨr

∂r

∂t
=
∂Ψ(x, t)

∂t
− v∇Ψ ,

the GP equation (2.20) is transformed to[
− ~2

2m
∇2 + i

~2

m
kv∇+ U(x) +

∫
d3x′V (x− x′)Ψ∗(x′, t)Ψ(x′, t)

]
Ψ(x, t) = i~

∂Ψ(x, t)

∂t
,

(2.22)

where kv = m
~ v is a wavevector corresponding to the velocity of disorder. The ansatz for

9



2. BEC IN DISORDERED POTENTIALS

a solution from Eq. (2.21) becomes

Ψ(x, t) = eikSxe
− i

~

(
µ+

~2k2S
2m
− ~2kSkv

m

)
t
ψ(x, t) , (2.23)

ψ(x, t) = ψ0 + ψ1(x, t) + . . . .

Substituting Eq. (2.23) into Eq. (2.22) and labeling

K = kS − kv , (2.24)

we obtain[
− ~2

2m
∇2 − i~

2

m
K∇+ U(x)− µ+

∫
d3x′V (x− x′)ψ∗(x′, t)ψ(x′, t)

]
ψ(x, t)

= i~
∂ψ(x, t)

∂t
. (2.25)

Zeroth-order solution is space-time independent, and is again equal to

ψ0 =
µ

V (k = 0)
. (2.26)

Assuming that solutions of all orders up to n-th are time-independent leads to a time-

independent term U(x)ψn(x) in the linear equation for the solution ψn+1 of the order n+1.

After Fourier-transforming the equation, ((r, t) → (k, ω)), a term δ(ω) appears, making

also the solution ψn+1 time-independent. Therefore, using the mathematical induction,

all corrections will be time-independent. We conclude that there is a time-independent

solution to the Eq. (2.25) satisfying at the same time the following time-independent

equation:[
− ~2

2m
∇2 − i~

2

m
K∇+ U(x)− µ+

∫
d3x′V (x− x′)ψ∗(x′)ψ(x′)

]
ψ(x) = 0. (2.27)

2.4.1 Local fluid velocity

Superfluid velocity defined by Eq. (1.8) is superfluid velocity in a usual sense. In our

present case, with disorder, it encodes the total velocity of both, the superfluid and the

normal fluid component.

10



The fluid wavevector is given by ktot = m
~ vS , which together with Eq. (1.8) yields:

ktot =
1

i
∇ ln

Ψ

|Ψ|
=

1

i
∇ ln

√
Ψ

Ψ∗
=

1

2i

Ψ∗∇Ψ−Ψ∇Ψ∗

|Ψ|2

=
1

2in
(ψ∗eψ

∗ikSψeψ + ψ∗eψ
∗ψe∇ψ + ψeψikSψ

∗
eψ
∗ − ψeψψ∗e∇ψ∗)

= kS +
1

2in
(ψ∗∇ψ − ψ∇ψ∗) (2.28)

= kS −∆k . (2.29)

Here, ∆k denotes a change of the fluid wavevector due to disorder. For K equal to zero

ψ is real, and therefore ∆k(x) = 0. Expanding ∆k using the expression from Eq. (2.28)

to linear terms in K we obtain

∆k(x) = D̂(x)K +O(K2) . (2.30)

2.4.2 Two-fluid model

As we said in the beginning of Sec. 2.4 the BEC fluid in the presence of disorder is divided

into a macroscopic normal component and a macroscopic superfluid component.

Apart from the notion of the clean-case superfluid wavevector kS and the local fluid

wavevector ktot(x) we also define the wavevector k′S of the macroscopic superfluid com-

ponent. For K = 0 the superfluid velocity remains kS and its expansion around K = 0

gives:

k′S = kS − D̂SK +O(K2) , (2.31)

where D̂S is derivative of k′S with respect to K.

The average momentum density and kinetic energy density can be expanded, using

Eqs. (2.24) and (2.29)-(2.31), with respect to k′S and kv as

〈n(x)ktot(x)〉 =
[
(〈n〉 − 〈nD̂〉)(Î − D̂S)−1

]
k′S +

[
(〈nD̂〉 − 〈n〉 D̂S)(Î − D̂S)−1

]
kv ,

(2.32)

and

〈
n(x)k2

tot(x)
〉

= k′S(Î − D̂T
S )−1

[
〈n〉 Î + 〈nD̂T D̂〉 − 〈nD̂〉 − 〈nD̂T 〉

]
(Î − D̂S)−1k′S

+ kv(Î − D̂T
S )−1

[
〈n〉D̂T

S D̂S + 〈nD̂T D̂〉

− D̂T
S 〈nD̂〉 − 〈nD̂T 〉D̂S

]
(Î − D̂S)−1kv

+ 2k′S(Î − D̂T
S )−1

[
〈nD̂〉+ 〈nD̂T 〉D̂S

− 〈n〉D̂S − 〈nD̂T D̂〉
]

(Î − D̂S)−1kv . (2.33)
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2. BEC IN DISORDERED POTENTIALS

In the two fluid model the total kinetic energy is the sum of kinetic energies of individual

fluids. Therefore, the last (mixed) term in Eq. (2.33) is equal to zero, fixing the macroscopic

superfluid velocity change to:

D̂S = (〈n〉 − 〈nD̂T 〉)−1(〈nD̂〉 − 〈nD̂T D̂〉) . (2.34)

With Eq. (2.32) this leads to a definition of the densities of superfluid and normal com-

ponents as:

n̂S = (〈n〉 − 〈nD̂〉)
[
〈n〉 − 〈nD̂〉 − 〈nD̂T 〉+ 〈nD̂T D̂〉

]−1
(〈n〉 − 〈nD̂T 〉), (2.35)

n̂N = 〈n〉Î − n̂S . (2.36)

The above definitions are such that

〈n(x)ktot(x)〉 = n̂Sk
′
S + n̂Nkv,

and it is also easy to check that they satisfy

〈
n(x)k2

tot(x)
〉

= k′Sn̂Sk
′
S + kvn̂Nkv ,

making the two-fluid picture self-consistent. Now calculation of the superfluid density

reduces to calculating D̂(x).

2.4.3 Calculating D̂

From the definition of ∆k(x), Eq. (2.30), we have

∆ki = Dij(x)Kj =
(
∂Kj∆ki(x)

)
K=0

Kj .

If we insert Eq. (2.28) and define

p(x) = (∇Kψ(x))K=0 , (2.37)

the expression for Dij reduces to

Dij(x) = − 1

2i

(
∂Kj∇i ln

ψ

ψ∗

)
K=0

= − 1

2i
∇i
(
∂Kjψ

ψ
−
∂Kjψ

∗

ψ∗

)
K=0

= − 1

2i
∇i
pj(x)− p∗j (x)

ψ0(x)
,

12



or

D̂(x) = −∇⊗ Imp(x)

ψ0(x)
. (2.38)

Calculating imaginary part of p can be performed by differentiating GP equation (2.27)

with respect to K and then setting K = 0,

− ~2
2m∇

2p(x)− i~2
m ∇ψ

0(x) + (U(x)− µ)p(x)

+
∫
d3x′V (x− x′)

[
(p∗(x′) + p(x′))ψ0(x′)ψ0(x) + ψ0(x′)2p(x)

]
= 0 .

Conjugating and subtracting the result from the original expression gives[
− ~2

2m
∇2 + U(x)− µ+

∫
d3x′V (x− x′)n0(x′)

]
Imp(x) =

~2

m
∇ψ0(x) . (2.39)

To summarize, after finding a solution ψ0 of GP equation, we calculate Imp(x) by

solving the linear inhomogeneous equation (2.39). Then it is straightforward to calculate

D̂ using Eq. (2.38) as well as superfluid and normal component densities using Eqs. (2.35)

and (2.36).

2.4.4 Perturbative expansion

In this section we perturbatively solve Eq. (2.39), and calculate Eqs. (2.38) and (2.36).

From now on, when referring to ψ we actually assume ψ0, i.e. the solution of time-

independent GP equation (1.4), and p(k) will correspond to the Fourier transform of

Imp(x). We already know the perturbative expansion for ψ, which is given by Eqs. (2.7)-

(2.9).

The Fourier transform of Eq. (2.39) is[
~2k2

2m
− µ

]
p(k)+

∫
d3k′

(2π)3

[
V (k− k′)n(k− k′) + U(k− k′)

]
p(k′) = i

~2k

m
ψ(k) . (2.40)

Because ψ0 is position-independent its Fourier transform will be ψ0(k) = (2π)3δ(k)ψ0.

Similarly, n0(k) = (2π)3δ(k)ψ2
0, since n0 = ψ2

0. Using this, with µ = ψ2
0V (k = 0) , gives

the n-th order equation in the form

~2k2

2m
pn(k)+

∫
d3k′

(2π)3

[
n−1∑
i=1

V (k− k′)nn−i(k− k′)pi(k
′) + U(k− k′)pn−1(k′)

]
= i

~2k

m
ψn(k) .

(2.41)

From Eqs. (2.26) and (2.37) it follows that p0 = 0, and therefore

p0(k) = 0 . (2.42)

13



2. BEC IN DISORDERED POTENTIALS

Taking n = 0 (the zeroth order) in Eq. (2.41) yields to

k2p0(k) = 2i(2π)3kδ(k)ψ0 , (2.43)

which has a solution p0(k 6= 0) = 0, but is divergent for k = 0. In order to exclude the

strange behavior of the distribution given by Eq. (2.43), we take that the solution of the

equation is given by Eq. (2.42).

In the first order we have

p1(k) = 2i
k

k2
ψ1(k) , (2.44)

and in the second order

p2(k) = 2i

[
k

k2
ψ2(k)−

∫
d3k′

(2π)3

k′

k′2
[U(k− k′) + 2ψ0V (k− k′)ψ1(k− k′)]ψ1(k′)

~2k2

2m

]
.

(2.45)

Expanding Eq. (2.38) in terms of different powers of U leads to

D̂(x) = − 1

ψ0
∇⊗

[(
1− ψ1(x)

ψ0

)
(Imp1(x) + Imp2(x))

]
+ . . .

=
2

ψ0

∫
d3k

(2π)3
eikx k⊗

[
p1(k)

2i
+

p2(k)

2i
− 1

ψ0

∫
d3k′

(2π)3

p1(k′)

2i
ψ1(k− k′)

]
+ . . . ,

and one immediately gets zeroth, first and second order solutions:

D̂0 = 0 , (2.46)

D̂1(k) =
2

ψ0

k⊗ k

k2
ψ1(k) , (2.47)

and

D̂2(k) =
2

ψ0

[
k⊗ k

k2
ψ2(k)−

∫
d3k′

(2π)3

k⊗ k′

k′2

(
1

ψ0
ψ1(k′)ψ1(k− k′) +

U(k− k′)ψ1(k′)
~2k2

2m

)]
.

(2.48)

Averages of Eqs. (2.45) and (2.48) lead to expressions of the type

k2 〈x(k)〉 = δ(k) · . . . ,

which is of the same form as Eq. (2.43), and we take the same solution, namely 〈x(k)〉 = 0.

The remaining term in Eq. (2.48), after averaging, has an odd integrand with respect to

the integration variable k′ and it is also vanishing. Therefore we conclude that

〈p2〉 = 0 ,

14



and

〈D̂2〉 = 0 . (2.49)

Using the same procedure of ensemble average calculation as in Eq. (2.16), we give

below some useful averaged expressions:

〈
n1D̂1

〉
= 2ψ0

∫
d3kd3k′

(2π)6

2

ψ0

k′ ⊗ k′

k′2
〈
ψ1(k′)ψ1(k− k′)

〉
= 4ψ2

0

∫
d3k

(2π)3

k⊗ k

k2

R(k)[
~2k2
2m + 2nV (k)

]2 , (2.50)

and 〈
D̂T

1 D̂1

〉
= 4

∫
d3k

(2π)3
(ek ⊗ ek)2 R(k)[

~2k2
2m + 2nV (k)

]2

= 4

∫
d3k

(2π)3
ek ⊗ ek

R(k)[
~2k2
2m + 2nV (k)

]2

=
1

ψ2
0

〈
n1D̂1

〉
. (2.51)

Finally, by expanding Eqs. (2.34) and (2.36) and taking into account Eqs. (2.49)-(2.51)

we obtain 〈
D̂
〉

= 0 , (2.52)

D̂S = 〈D̂2〉+
1

n0
〈n1D̂1〉 − 〈D̂T

1 D̂1〉+ . . . = o(R) , (2.53)

n̂N = n0〈D̂T
1 D̂1〉+ . . .

= 4n

∫
d3k

(2π)3

k⊗ k

k2

R(k)[
~2k2
2m + 2nV (k)

]2 + . . . . (2.54)

These results are valid for arbitrary disorder correlation function R(k), and effective

two-particle interaction V (k). Eqs. (2.52) and (2.53) imply that weak disorder strength

does not alter neither the average fluid velocity nor the superfluid velocity, as long as the

velocities are small and irrespective of the precise nature of disorder and the interparticle

interaction.

2.4.5 Cylindrical symmetry

In the case of a cylindrically symmetric system, choosing symmetry axis as z axis, denoting

by θ and ϕ the polar and the azimuth angle, and integrating Eq. (2.54) in spherical

15



2. BEC IN DISORDERED POTENTIALS

coordinates with respect to ϕ gives

sin θ

∫ 2π

0
dϕ eke

T
k = sin θ

∫ 2π

0
dϕ

 sin2 θ cos2 ϕ sin2 θ sinϕ cosϕ sin θ cos θ cosϕ

sin2 θ sinϕ cosϕ sin2 θ sin2 ϕ sin θ cos θ sinϕ

sin θ cos θ cosϕ sin θ cos θ sinϕ cos2 θ



= sin θ

 π(1− cos2 θ) 0 0

0 π(1− cos2 θ) 0

0 0 2π cos2 θ

 . (2.55)

2.4.6 Spherical symmetry

If both V (k) and R(k) are θ-independent, i.e. we have spherical symmetry, integrating

Eq. (2.55) with respect to θ leads to a solution in the second order of disorder strength

(first order in R):

n̂N =
4

3
(n− n′)Î . (2.56)

This result shows that the superfluid depletion will be by a factor of 4/3 higher then the

condensate depletion.

2.5 Sound velocity

In the mean-field approach, we can try to define sound velocity by perturbing the time-

independent solution by a small time-dependent contribution. It is expected that sound

waves with wavelengths close the correlation length would scatter and interfere due to dis-

order hills and valies, making global sound velocity impossible to define precisely. Locally,

the sound waves would have the same speed as in the clean case.

For long-wavelength sound waves (compared to the disorder correlation length), sound

velocity can be calculated using the hydrodynamical approach, Eqs. (1.11) and (1.12).

Those are macroscopic equations and can be used only for slowly varying quantities that

do not depend on the specific microscopic realization. Spatial averaging over distances

much larger than the correlation length and much smaller than wavelengths would solve the

problem. Assuming that it gives the same result as the disorder average over the ensemble1,

we obtain the hydrodynamic equations for the macroscopic (or averaged) quantities:

∂nmac(x, t)

∂t
+∇(n̂S(x, t)v′S(x, t)) = 0 , (2.57)

m
∂v′S(x, t)

∂t
+∇

(
mv′S(x, t)2

2
+ µ(nmac(x, t))

)
= 0 , (2.58)

1See the beginning of the chapter.
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where nmac denotes macroscopic density and the disorder velocity kv is taken to be zero.

If we write densities and the superfluid velocity as the sums of averages and their

variations,

nmac(x, t) = n+ δn(x, t), (2.59)

n̂S(x, t) = n̂S + δn̂S(x, t), (2.60)

v′S(x, t) = δv′S(x, t), (2.61)

and neglect second-order terms in variations, we get the following system of equations:

∂δn(x, t)

∂t
+∇(n̂Sδv

′
S(x, t)) = 0, (2.62)

∂δv′S(x, t)

∂t
= − 1

m
∇µ (n+ δn(x, t)) = − 1

m

∂µ

∂n
∇δn(x, t). (2.63)

Taking the time derivative of the first equation and substituting the superfluid velocity

variation, expressed from the second equation, gives

∂2δn(x, t)

∂t2
− 1

m

∂µ

∂n
∇(n̂S∇δn(x, t)) = 0. (2.64)

From here it can be easily seen that the sound velocity in the q direction is given by

c2
q =

1

m

∂µ

∂n
qT n̂Sq. (2.65)

2.6 Comparison to the result of Huang and Meng

In Ref. [13] Huang and Meng used Bogoliubov transformation to calculate condensate

depletion for the case of contact interaction and δ-correlated disorder, obtaining

nHM =
m

3
2R
√
n

4π~3√g
. (2.66)

This result is linear in R, as all our corrections will be, and it is useful to compare relative

change of a quantity due to disorder to the relative change of the condensate density. To

that end we define a correction of the quantity A as

∆A = lim
R→0

A
A0
−Ad
nHM
n

. (2.67)

Here A0Ad is a value of the quantity A in the clean (R = 0) system, while Ad denotes

possible dimensionless anisotropy factor due to dipolar interaction.
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2. BEC IN DISORDERED POTENTIALS

We will now consider special case when

R(k) = RR0(kT σ̂k), V (k) = gV0(ek) , (2.68)

where R0 and V0 are dimensionless functions, R and g are disorder and interaction

strengths, and σ̂ is a tensor of characteristic correlation lengths. For both contact and

dipolar interaction the function V0 does not depend on the module of k, just on its direction

in the case of dipolar interaction.

Performing change of variable k→ 2
√
mng
~ k =

√
2
ξ k, and denoting ẑ = 2σ̂

ξ2
, expressions

(2.16), (2.18), (2.19) and (2.54) are transformed into

n− n0 = 8πnHM

∫
d3k

(2π)3

R0(kT ẑk)

[k2 + V0(ek))]2
+ . . . , (2.69)

µ = ng

[
V0(ek) + 32π

nHM

n

∫
d3k

(2π)3

V0(ek)R0(kT ẑk)
(
k2 + 1

2V0(ek)
)

k2 [k2 + V0(ek)]2
+ . . .

]
, (2.70)

∂µ

∂n
= g

[
V0(ek) + 32π

nHM

n

∫
d3k

(2π)3

k2R0(kT ẑk)V0(ek)

[k2 + V0(ek)]3
+ . . .

]
, (2.71)

(nN )ij = 32πnHM

∫
d3k

(2π)3

R0(kT ẑk)kikj
k2[k2 + V0(ek)]2

+ . . . . (2.72)

Taking Eq. (2.67) into account, the previous expressions can be written as

−∆n0 = 8π

∫
d3k

(2π)3

R0(kT ẑk)

[k2 + V0(ek))]2
, (2.73)

∆µ = 32π

∫
d3k

(2π)3

V0(ek)R0(kT ẑk)
(
k2 + 1

2V0(ek)
)

k2 [k2 + V0(ek)]2
, (2.74)

∆ ∂µ
∂n

= 32π

∫
d3k

(2π)3

k2R0(kT ẑk)V0(ek)

[k2 + V0(ek)]3
, (2.75)

−∆(nS)ij
= ∆(nN )ij = 32π

∫
d3k

(2π)3

R0(kT ẑk)kikj
k2[k2 + V0(ek)]2

. (2.76)

Substituting Eqs. (2.75) and (2.76), with Eq. (2.67), in (2.65) we get for the sound

velocity

c2
q =

1

m
g
(
V0(q) +

nHM

n
∆ ∂µ

∂n
+ . . .

)
qTn

(
Î − nHM

n
∆̂nN + . . .

)
q

=
gn

m

[
V0(q) +

nHM

n

(
−V0(q)qT ∆̂nNq + ∆ ∂µ

∂n

)
+ . . .

]
,
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and its second-order correction can be written as

∆c2q
= −V0(q)qT ∆̂nNq + ∆ ∂µ

∂n
. (2.77)
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Chapter 3

Dipolar interaction and

Lorentz-correlated disorder

In this chapter we will consider BEC systems in the presence of two different anisotropies:

anisotropic dipolar interaction between the particles and anisotropic disorder potential.

The latter is motivated by anisotropy of the laser-speckle potential.

In order to obtain analytical results, we model the disorder correlation function by a

cylindrically-symmetric Lorentzian in a Fourier space,

R(k) =
R

1 + σ2
ρk

2
ρ + σ2

zk
2
z

. (3.1)

This function is not realistic, but the results qualitatively coincide with the case of a

Gaussian-correlated disorder, numerically calculated in Ref. [19], and we expect that all

phenomena that appear here would also appear for the true laser-speckle correlation func-

tion.

Assuming that the van der Waals forces between the atoms can be approximated at

low energies by an effective contact interaction, the interaction potential in the presence

of an external field that aligns the dipoles in a direction m takes the form [22]:

Veff(r) = gδ(r) +
Cdd
4πr3

(1− cosφ(m, r)) , (3.2)

where φ(m, r) represents the angle between vectors m and r .

Defining a ratio of a dipole-dipole and contact interaction by

ε =
Cdd
3g

, (3.3)
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DISORDER

and taking the Fourier transform of Eq. (3.2), we obtain

V (k) = g
[
1 + ε

(
3 cos2 φ(m,k)− 1

)]
. (3.4)

We now use Eqs. (3.1) and (3.4) to calculate the corrections of physical observables

defined in Eqs. (2.73)-(2.76).

Denoting symmetry direction of the disorder by d, expressions for functions R0 and

V0 from Eq. (2.68) become

R0(kT ẑk) =
1

1 + k2
(
z2
ρ sin2 φ(d,k) + z2

z cos2 φ(d,k)
) =

1

1 + k2r2 (d,k)
, (3.5)

V0(ek) = 1 + ε
(
3 cos2 φ(m,k)− 1

)
= c2(m,k) , (3.6)

with

r2(d,k) = z2
ρ sin2 φ(d,k) + z2

z cos2 φ(d,k) , (3.7)

c2(m,k) = 1 + ε
(
3 cos2 φ(m,k)− 1

)
. (3.8)

Inserting Eqs. (3.5) and (3.6) into Eqs. (2.73)-(2.76), writing all integrals in spherical

coordinates, and integrating with respect to k leads to

−∆n0 =
1

4π

∫
dΩ

1

c (1 + cr)2 , (3.9)

∆µ =
1

2π

∫
dΩ

c(3 + 2cr)

(1 + cr)2 , (3.10)

∆ ∂µ
∂n

=
1

4π

∫
dΩ

c(3 + cr)

(1 + cr)3 , (3.11)

∆̂nN =
1

π

∫
dΩ

eke
T
k

c (1 + cr)2 , (3.12)

where c =
√
c2(m,k) and r =

√
r2(d,k) .

If both c and r contain square roots (the case when both anisotropies are present),

we need to rationalize the integrands in Eqs. (3.9)-(3.12) in order to proceed with their

integration, obtaining:

−∆n0 =

∫
dΩ

4π

(
1 + c2r2

c2 (1− c2r2)2 c−
2

(1− c2r2)2 r

)
, (3.13)

∆µ =

∫
dΩ

4π

(
2

3− c2r2

(1− c2r2)2 c− 4c2 2− c2r2

(1− c2r2)2 r

)
, (3.14)
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∆ ∂µ
∂n

=

∫
dΩ

4π

(
3 + c2r2(6− c2r2)

(1− c2r2)3 c− 8c2

(1− c2r2)3 r

)
, (3.15)

∆̂nN =

∫
dΩ

4π

(
1 + c2r2

c2 (1− c2r2)2 c−
2

(1− c2r2)2 r

)
4eke

T
k . (3.16)

3.1 Cylindrical symmetry

In the case when the direction od dipoles is parallel to the disorder symmetry, i.e. m ‖ d,

the whole system is cylindrically symmetric. Integrating with respect to ϕ and taking into

account Eq. (2.55), expressions (3.9)-(3.16) can be further simplified. Namely, the density

correction of normal fluid is separated into two integrals,

∆̂nN = −2∆n0

 1 0 0

0 1 0

0 0 0

+ 2Isd

 −1 0 0

0 −1 0

0 0 2

 . (3.17)

The normal component of the fluid can be separated into the parallel and the perpendicular

part by

∆nNρ = −2∆n0 − 2Isd,

∆nNz = 4Isd.

Introducing cos θ = t and using the parity of the integrand with respect to t, we get

non-rationalized integrals,

−∆n0 =

∫ 1

0
dt

1

c (1 + cr)2 , (3.18)

∆µ = 2

∫ 1

0
dt
c(3 + 2cr)

(1 + cr)2 , (3.19)

∆ ∂µ
∂n

=

∫ 1

0
dt
c(3 + cr)

(1 + cr)3 , (3.20)

Isd =

∫ 1

0
dt

t2

c (1 + cr)2 , (3.21)

and after their rationalization we obtain:

−∆n0 =

∫ 1

0
dt

(
1 + c2r2

c2 (1− c2r2)2 c−
2

(1− c2r2)2 r

)
, (3.22)

∆µ =

∫ 1

0
dt

(
2

3− c2r2

(1− c2r2)2 c− 4c2 2− c2r2

(1− c2r2)2 r

)
, (3.23)
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∆ ∂µ
∂n

=

∫ 1

0
dt

(
3 + c2r2(6− c2r2)

(1− c2r2)3 c− 8c2

(1− c2r2)3 r

)
, (3.24)

Isd =

∫ 1

0
dt t2

(
1 + c2r2

c2 (1− c2r2)2 c−
2

(1− c2r2)2 r

)
. (3.25)

Expressions for functions r and c also change to

c2 = 1− ε+ 3εt2 , (3.26)

r2 = z2
ρ + (z2

z − z2
ρ)t2 . (3.27)

3.2 Contact interaction and cylindrically symmetric Lorentzian

disorder

In this section we study special case of contact interaction. In the absence of dipolar

interaction we have ε = 0, and therefore c = 1. Now integrals (3.18)-(3.21) reduce to

−∆n0 =

∫ 1

0
dt

1

(1 + r)2 , (3.28)

∆µ = 2

∫ 1

0
dt

3 + 2r

(1 + r)2 , (3.29)

∆ ∂µ
∂n

=

∫ 1

0
dt

3 + r

(1 + r)3 , (3.30)

Isd =

∫ 1

0
dt

t2

(1 + r)2 . (3.31)

Making a substitution (Euler substitution, 2.251 from [21])

r = xt+ zρ , (3.32)

with d = z2
z − z2

ρ, leads to the following integrals of rational functions:

−∆n0 =

∫ zz−zρ

0
dx

2
(
d+ x2

)
zρ

(x2 (−1 + zρ) + d (1 + zρ)) 2
, (3.33)

∆µ = 2

∫ zz−zρ

0
dx

4zρ

(
3d2 − 3x4 + 2

(
d+ x2

)2
zρ

)
(d− x2) (x2 (−1 + zρ) + d (1 + zρ)) 2

, (3.34)

∆ ∂µ
∂n

=

∫ zz−zρ

0
dx

2
(
d+ x2

)
zρ
(
x2 (−3 + zρ) + d (3 + zρ)

)
(x2 (−1 + zρ) + d (1 + zρ)) 3

, (3.35)
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Isd =

∫ zz−zρ

0
dx

32x2
(
d+ x2

)
z3
ρ

(d− x2)2 (x2 (−1 + zρ) + d (1 + zρ)) 2
. (3.36)

Their solutions can be expressed in terms of a new function (see Appendix A for details

and properties)

T (x) =
arctan

√
x√

x
. (3.37)

−∆n0 =
1

(zρ − 1)(zρ + 1)

[
2z2
ρ

(zρ + 1)(zρ + zz)
T

(
zρ − 1

zρ + 1

zz − zρ
zz + zρ

)
− 1

zz + 1

]
, (3.38)

∆µ = −
4(z2

ρ − 2)

(z2
ρ − 1)(zρ + 1)(zρ + zz)

T

(
zρ − 1

zρ + 1

zz − zρ
zz + zρ

)
+

8

zρ + zz
T

(
zρ − zz
zρ + zz

)
, (3.39)

∆ ∂µ
∂n

=
2(

−1 + z2
ρ

)
2

[
3 + zz

(
2 + z2

ρ

)
2 (1 + zz) 2

+
z2
ρ

(
−4 + z2

ρ

)
(1 + zρ) (zz + zρ)

T

(
zρ − 1

zρ + 1

zz − zρ
zz + zρ

)]
, (3.40)

Isd =
1

(−zz + zρ) (zz + zρ)

[
− 2 + zz

1 + zz

+
2
(
−2 + z2

ρ

)
(1 + zρ) (zz + zρ)

T

(
zρ − 1

zρ + 1
· zz − zρ
zz + zρ

)
+

4

zz + zρ
T

(
zρ − zz
zρ + zz

)]
. (3.41)

From Eq. (2.77) and the fact that in this case V0 = 1 , we conclude that the speed of

sound can be also separated into the parallel and the perpendicular component:

∆c2ρ
= ∆ ∂µ

∂n
+ 2∆n0 + 2Isd , (3.42)

∆c2z
= ∆ ∂µ

∂n
− 4Isd . (3.43)

The calculated corrections are shown in Fig. 3.1. The solid red line in the plot of the

superfluid depletion shows critical values of correlation lengths for which the superfluid

depletion becomes smaller than the condensate depletion, suggesting that some atoms that

are out of the condensate still contribute to the superfluidity.

From Eqs. (3.42) and (3.43) we can see that the superfluid depletion reduces the sound

velocity, but the decrease of compressibility increases it. The sound velocity correction

becomes negative for some values of correlation lengths. Note that, in both cases, the
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Figure 3.1: Corrections in the case of a pure contact interaction and Lorentz-correlated
disorder.

negative correction is two orders of magnitude smaller than the δ-correlation correction.

The solid red line denotes vanishing sound velocity correction.

We have also considered a number of different limits, which are discussed in detail in

Appendix A.1. Summary of the results is presented in Tables 3.1 - 3.6.
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Table 3.1: Condensate depletion for different limiting cases for ε = 0 (pure contact inter-
action).

Limiting case −∆n0

1: zz ≈ zρ 1
(1+zρ)2

(
1 + 2

3(1+zρ)(zz − zρ) + . . .
)

2: zρ � 1, zρ � zz
1

1+zz
+
[

1
1+zz

+ 1
zz

(
ln zρ + ln

(
1 + 1

zz

)
− ln 2

)]
z2
ρ + . . .

3: 1� zρ � zz 1− π
2 zρ + 2z2

ρ − π
4 zρ

(
zz
zρ

)2
− 3π

4 z
3
ρ + . . .

4: zρ � 1, zρ � zz

[
− 1

1+zz
+ ln

(
2zρ

1+zz

)](
1
zρ

)2
+ . . .

5: 1� zρ � zz
π
2

(
1
zρ

)2 zρ
zz

+ . . .

Table 3.2: Correction of the chemical potential for different limiting cases for ε = 0 (pure
contact interaction).

Limiting case ∆µ

1: zz ≈ zρ 6+4zρ
(1+zρ)2

− 4(2+zρ)
3(1+zρ)3

(zz − zρ) + . . .

2: zρ � 1, zρ � zz
2

1+zz
+ 4 ln(1+zz)

zz
+ . . .

3: 1� zρ � zz 6− 2πzρ + 20
3 z

2
ρ − πzρ

(
zz
zρ

)2
− 9π

4 z
3
ρ + . . .

4: zρ � 1, zρ � zz
2π
zρ

+ . . .

5: 1� zρ � zz 4 ln(2zz
zρ

) 1
zρ

zρ
zz

+ . . .

Table 3.3: Perpendicular superfluid depletion for different limiting cases for ε = 0 (pure
contact interaction).

Limiting case −∆Sρ

1: zz ≈ zρ 4
3(1+zρ)2

− 8
15(1+zρ)3

(zz − zρ) + . . .

2: zρ � 1, zρ � zz
2(zz−2)
z2z

+ 4 ln(1+zz)
z3z

+ . . .

3: 1� zρ � zz
4
3 −

3π
4 zρ + 16

5 z
2
ρ − π

8 zρ

(
zz
zρ

)2
− 5π

4 z
3
ρ + . . .

4: zρ � 1, zρ � zz
2
z2ρ

+ . . .

5: 1� zρ � zz π 1
z2ρ

zρ
zz

+ . . .
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Table 3.4: Parallel superfluid depletion for different limiting cases for ε = 0 (pure contact
interaction).

Limiting case −∆Sz

1: zz ≈ zρ 4
3(1+zρ)2

− 8
5(1+zρ)3

(zz − zρ) + . . .

2: zρ � 1, zρ � zz
4(2+zz)
z2z(1+zz)

− 8 ln(1+zz)
z3z

+ . . .

3: 1� zρ � zz
4
3 −

π
2 zρ + 8

5z
2
ρ − 3π

4 zρ

(
zz
zρ

)2
− π

2 z
3
ρ + . . .

4: zρ � 1, zρ � zz 4
(
− (2+zz)

1+zz
+ ln

8zρ
1+zz

)
1
z2ρ

+ . . .

5: 1� zρ � zz 4 1
z2ρ

(
zρ
zz

)2
+ . . .

Table 3.5: Perpendicular component of the sound velocity for different limiting cases for
ε = 0 (pure contact interaction).

Limiting case ∆cρ

1: zz ≈ zρ 5−zρ
6(1+zρ)3

− 16+zρ
15(1+zρ)4

(zz − zρ) + . . .

2: zρ � 1, zρ � zz
4+3zz(2+zz)
2z2z(1+zz)2

− 2 ln(1+zz)
z3z

+ . . .

3: 1� zρ � zz
5
6 −

5π
8 zρ + 17

5 z
2
ρ − 7π

16 zρ

(
zz
zρ

)2
− 13π

8 z3
ρ + . . .

4: zρ � 1, zρ � zz
1
2

(
−2 + zz

(1+zz)2
+ ln

2zρ
1+zz

)
1
z2ρ

+ . . .

5: 1� zρ � zz −π
4

1
z2ρ

zρ
zz

+ . . .

Table 3.6: Parallel component of the sound velocity for different limiting cases for ε = 0
(pure contact interaction).

Limiting case ∆cz

1: zz ≈ zρ 5−zρ
6(1+zρ)3

− 8−7zρ
15(1+zρ)4

(zz − zρ) + . . .

2: zρ � 1, zρ � zz
−8+zz(−12+zz(−1+2zz))

2z2z(1+zz)2
+ 4 ln(1+zz)

z3z
+ . . .

3: 1� zρ � zz
5
6 −

3π
4 zρ + 21

5 z
2
ρ − π

8 zρ

(
zz
zρ

)2
− 2πz3

ρ + . . .

4: zρ � 1, zρ � zz
1
2

(
8+zz(13+4zz)

(1+zz)2
+ 3 ln 1+zz

2zρ

)
1
z2ρ

+ . . .

5: 1� zρ � zz
π
4

1
z2ρ

zρ
zz

+ . . .
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3.3 Dipolar interacton and isotropic Lorentzian disorder

In this section we study special case of dipolar interaction with isotropic disorder, which

amounts to r = z = const. We again have cylindrical symmetry and integrals (3.18)-(3.21)

reduce to

−∆n0 =

∫ 1

0
dt

1

c (1 + zc)2 , (3.44)

∆µ = 2

∫ 1

0
dt
c(3 + 2zc)

(1 + zc)2 , (3.45)

∆ ∂µ
∂n

=

∫ 1

0
dt
c(3 + zc)

(1 + zc)3 , (3.46)

Isd =

∫ 1

0
dt

t2

c (1 + zc)2 . (3.47)

Making a substitution similar to the one in Eq. (3.32)

c = xt+ δ , (3.48)

with δ =
√

1− ε, leads to the following integrals of rational functions:

−∆n0 =

∫ √3−2δ2−δ

0
dx

−2x2 + 6ε

(x2(−1 + zδ) + 3(ε+ zδε))2 , (3.49)

∆µ = 2

∫ √3−2δ2−δ

0
dx

4δ2
(
x2 + 3ε

)2 (
x2(−3 + 2zδ) + 9ε+ 6zδε

)
(−x2 + 3ε)2 (x2(−1 + zδ) + 3(ε+ zδε))2 , (3.50)

∆ ∂µ
∂n

=

∫ √3−2δ2−δ

0
dx

2δ2
(
x2 + 3ε

)2 (
x2(−3 + zδ) + 3(3 + zδ)ε

)
(−x2 + 3ε) (x2(−1 + zδ) + 3(ε+ zδε))3 , (3.51)

Isd =

∫ √3−2δ2−δ

0
dx

32x2δ2

(−x2 + 3ε) (x2(−1 + zδ) + 3(ε+ zδε))2 . (3.52)

We present the results using the T -function, with c = zδ−1
zδ+1 and ε = 4λ

1−2λ+3λ2
:

−∆n0 =
z(1− λ)

(−1 + z2δ2) (1− λ+ zδ(1 + λ))
+

(−1 + λ)

δ(−1 + zδ)(1 + zδ)2
T (cλ) , (3.53)

∆µ =
2(−1 + λ+ 2zδ(−1− λ+ zδ(1− λ+ zδ(1 + λ))))

z (−1 + z2δ2) (1− λ+ zδ(1 + λ))
(3.54)

+
2(−1 + λ)

z2δ
T (−λ) +

2(−1 + λ)

z2δ(−1 + zδ)(1 + zδ)2
T (cλ) . (3.55)
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Figure 3.2: Corrections for the case of dipolar interaction and isotropic Lorentz-correlated
disorder.

∆ ∂µ
∂n

=
(−1 + λ)

(
1− λ+ z2δ2(2− 2λ+ 3zδ(1 + λ))

)
z (−1 + z2δ2)2 (1− λ+ zδ(1 + λ))2

(3.56)

+
(1− λ)

z2δ
T (−λ)−

(
−1 + 4z2δ2

)
(−1 + λ)

z2δ(−1 + zδ)2(1 + zδ)3
T (cλ) , (3.57)

Isd =
(−1 + λ)3

4zδ2λ(1− λ+ zδ(1 + λ))
− (−1 + λ)3

4z2δ3λ
T (−λ) +

(−1 + λ)3

4z2δ3(λ+ zδλ)
T (cλ) (3.58)

The above results are shown in Fig. 3.2. We stress that condensate depletion and

depletion of the perpendicular component of superfluid increase as ε is increased and

diverge for ε→ 1. However, parallel component of the superfluid depletion decreases with

increasing ε. The solid red line in the plot shows where the condensate depletion and the

depletion of perpendicular superfluid component are equal.
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3.4 Dipoles parallel to disorder symmetry

If all dipoles are parallel to the disorder symmetry, the whole system is cylindrically

symmetric, as discussed in Sec. 3.1. This enables us to use the Euler substitutions given

by Eqs. (3.32) and (3.48) in each term of the integrals (3.22)-(3.25). In this way, they are

reduced to two integrals of rational function. However, for c2r2 = 1 those diverge, but

these divergences cancel out because original integrals (3.18)-(3.21) are well defined. The

analytical results are presented detail in Appendix B.

3.4.1 Critical values of ε

The ratio of the parallel superfluid depletion and the condensate depletion increases with

increasing zρ, but decreases with increasing zz and ε. The ratio of the perpendicular

superfluid depletion and the condensate depletion obeys complementary dependence laws.

In Fig. 3.3 we plot the values of ε for which condensate depletion becomes larger then the

parallel superfluid depletion or smaller then the perpendicular superfluid depletion.

Note that for certain values of correlation lengths the parallel superfluid density is

always larger then the condensate density, regardless of the dipolar interaction strength.

(a) For a perpendicular superfluid (b) For a parallel superfluid

Figure 3.3: Critical values of ε for which superfluid and condensate depletion are equal.
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Chapter 4

Conclusions

In this thesis we have studied Bose-Einstein condensates in disordered potentials, without

the overall trap, using the Gross-Pitaevskii equation. To this end we have given the precise

definition of the condensate density and the superfluid density and developed perturbation

theory for their calculation for the case of arbitrary correlation function and interaction.

We have then applied this perturbation theory to the case of anisotropic disorder and

dipolar interaction, obtaining qualitative, experimentally relevant results. In particular,

we have calculated corrections due to disorder of condensate density, compressibility, su-

perfluid density and the sound velocity, and studied their dependence on the strength of

the dipolar interaction and the disorder correlation length. We stress that the anisotropy

of the sound velocity should be measurable in Bragg spectroscopy experiments, while the

anisotropic superfluid density should affect the collective excitations of a harmonically

trapped condensate.

In future research we plan several extensions. To check the existing non-perturbative

calculations [20], we will automatize calculation of higher perturbative corrections in the

simplest case of contact interaction and δ-correlated disorder. We will also work on obtain-

ing quantitative results for the laser-speckle potential using numerical simulations. Using

finite-temperature Green’s function we hope to extend the definition of the superfluid

density, expecting that the thermally depleted component would move with the disorder,

making the above definition general. We plan to investigate influence of the disorder on the

critical temperature, and check the existence of a new phase of matter where the superflu-

idity is present without (global) condensation, and the opposite, where the condensation

is present, but without superfluidity.
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Appendix A

The T-function

In Sec. 3.2 We have defined

T (x) =
arctan

√
x√

x
,

where |x| < 1. Here we present some of the relevant properties of this function.

This is a well defined real-valued fuction for x > 0, but for x < 0 it has two branches

and we have to choose one branch of the square root. We take the one for which
√
−1 = i ,

and then for negative arguments we have

T (x) =
arctan i

√
−x

i
√
−x

=
arctanh

√
−x√

−x
=

1

2
√
−x

ln
1 +
√
−x

1−
√
−x

.

Taylor expansion of T around zero and 1 are given by

T (x) = 1− x

3
+
x2

5
− x3

7
+ . . . , (A.1)

T (1− x) =
π

4
+
π − 2

8
x+

3π − 8

32
x2 + . . . . (A.2)

We also need behaviour of the function when its argument tends to −1:

T (−1 + x) =
1

2
√

1− x
ln

1 +
√

1− x
1−
√

1− x
= ln 2− lnx

2
+

(
ln 2

2
− 1

4
− lnx

4

)
x+ . . . . (A.3)

First and second derivatives of the function are equal to

T ′(x) =
1

2x

(
1

1 + x
− T (x)

)
,

T ′′(x) =
3

4x2

(
− 3 + 5x

3(1 + x)2
+ T (x)

)
.

And, finally, we give a plot of the function in Fig. A.1.
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Figure A.1: Function T (x).

A.1 Limiting cases of the T-function

Since we are interested in the different limits of physical quantities with respect to zρ and

zz, we have to distinguish areas of interest in the zρ − zz plane where arguments of the

T -function in Sec. 3.2,
zρ−1
zρ+1

zz−zρ
zz+zρ

and
zρ−zz
zρ+zz

, approach values 0, −1 and 1. In Fig. A.2 we

show the metioined areas for the argument
zρ−1
zρ+1

zz−zρ
zz+zρ

of the T -function.

Figure A.2: Different limit areas for the argument
zρ−1
zρ+1

zz−zρ
zz+zρ

of the T -function.

In the diagonal part of the area 1 we have zz ≈ zρ , and functions are expanded to

Taylor series given by Eq. (A.1).

In the area 2 we have zz � zρ and 1 � zρ , and expand T -functions around −1,

Eq. (A.3).
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In the area 3 we have zρ � zz and 1 � zρ , and expand both T -functions in Taylor

series around 1, Eq. (A.2).

In the area 4 we have zρ � zz and zρ � 1 , and expand T
(
zρ−1
zρ+1

zz−zρ
zz+zρ

)
around −1 and

T
(
zρ−zz
zρ+zz

)
around 1.

In the area 5 we have zz � zρ and zρ � 1 , and expand T
(
zρ−zz
zρ+zz

)
around −1 and

T
(
zρ−1
zρ+1

zz−zρ
zz+zρ

)
around 1.

For small (or large) values of zz (compared to zρ) we can freely expand T
(
zρ−zz
zρ+zz

)
around 1 or −1, regardless of the value of the zρ. However, for T

(
zρ−1
zρ+1

zz−zρ
zz+zρ

)
we have to

take care that we do not make Taylor expansion around a value that is close to −1. If we

denote s = sign(zz − zρ) , for a correlation length much larger than the other we get

T

(
zρ − 1

zρ + 1
· zz − zρ
zz + zρ

)
= T

(
s
zρ − 1

zρ + 1

)
− 2sT ′

(
s
zρ − 1

zρ + 1

)
zρ − 1

zρ + 1

(
zρ
zz

)s
+ . . . . (A.4)

This expression cannot be used in areas 2 and 4.
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Appendix B

Results for dipolar interaction

with anisotropic disorder

General results for integrals (3.22)-(3.25) can be obtained by making Euler substitutions

(3.48) in the first and (3.32) in the second summand. To do so, we first make a change of

variable t→ t/
√

3ε.

All the results can be expressed in terms of quantities ε, zz and zρ, but use the following

combinations of these quantities in order to simplify the calculation:

δ =
√

1− ε , (B.1)

d =
z2
z − z2

ρ

3ε
, (B.2)

a =
1

2

(
z2
ρ + dδ2

)
, (B.3)

b = d+
1

4

(
z2
ρ − dδ2

)2
, (B.4)

lc =
−δ +

√
1 + 2ε√

3ε
, (B.5)

lr =
zz − zρ√

3ε
. (B.6)

Here, −a±
√
b are solutions of the equation 1−c2r2 = 0 with respect to dt2, while lc and lr

are upper limits of integration in Eqs. (3.22)-(3.25) after performing Euler substitutions.

We also define new functions,

A(x, y) = T (x+
√
y) + T (x−√y) , (B.7)

B(x, y) =
√
b (T (x+

√
y)− T (x−√y)) , (B.8)
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where T -function is assumed to be complex valued, and slightly redefined:

T (x) = lim
ε→0

1

2

(
arctan

√
x+ iε√

x+ iε
+

arctan
√
x− iε√

x− iε

)
. (B.9)

This enables expressing solutions in terms of real functions of real variables. Newly defined

T -function is the same as the old one everywhere in the complex plane, except for x < −1 ,

where both have discontinuities, but the new one is real-valued.

Several expressions will appear repeatedly in all four integrals,so we define

Cr =
dlr
(
d+ l2r

)
z2
ρ

3 (a2 − b) b
√
ε
(
(a2 − b) (d− l2r) 4 + 8adl2r (d− l2r) 2z2

ρ + 16d2l4rz
4
ρ

) , (B.10)

Cc =
dδ2lc

(
1 + l2c

)
3 (a2 − b) b

√
ε (16d2δ4l4c + (a2 − b) (l2c − 1) 4 + 8adδ2lc (l2c − 1) 2)

, (B.11)

xr =
4dl2r

(
b+ a

(
−a+ z2

ρ

))
(a2 − b) (d+ l2r)

2
, yr =

16bd2l4rz
4
ρ

(a2 − b)2 (d+ l2r)
4
, (B.12)

Ar = A(xr, yr), Br = B(xr, yr) , (B.13)

xc =
4
(
−a2 + b+ adδ2

)
l2c

(a2 − b) (1 + l2c )
2

, yc =
16bd2δ4l4c

(a2 − b)2 (1 + l2c )
4
, (B.14)

Ac = A(xc, yc), Bc = B(xc, yc) . (B.15)

With the above definitions, the solutions are:

−∆n0 =
√

3d
(
−
(
a2 + b

) (
d− l2r

)
2 − 4adl2rz

2
ρ

)
Cr

+
√

3d
(
−4ad2δ4l2c + a

(
a2 + 3b

) (
−1 + l2c

)
2 −

(
a2 + b

)
dδ2

(
1− 6l2c + l4c

))
Cc

+

(
a2 − 3b

)
d2lrz

2
ρ

2
√

3 (a2 − b)2 b
√
ε (d+ l2r)

Ar

+
d
(
d+ l2r

) (
−
(
a2 − b

)2
+ a

(
a2 − 2b

)
z2
ρ

)
4
√

3 (a2 − b) b2
√
εlrz2

ρ

Br

+
dlc
(
a4 − b(b− 3d)− a2d− a3z2

ρ + abz2
ρ

)
2
√

3 (a2 − b)2 b
√
ε (1 + l2c )

Ac

+
d
(
1 + l2c

) (
2a
(
−b(b− 2d) + a2(b− d)

)
+ b

(
−a2 + b

)
z2
ρ

)
8
√

3 (a2 − b) b2
√
εlc
(
2a− z2

ρ

) Bc , (B.16)
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∆µ = 2
√

3
((
a2 − b

) (
a
(
d− l2r

)
2 + 4dl2rz

2
ρ

)
− dδ2

((
a2 + b

) (
d− l2r

)
2 + 4adl2rz

2
ρ

))
Cr

+2
√

3d
(
b
(
−1 + l2c

)
2 + a2

(
1 + 6l2c + l4c

)
− 4al2cz

2
ρ

)
Cc

+
dlr
(
a4 + a2d− b(b+ 3d)− a3z2

ρ + abz2
ρ

)
√

3 (a2 − b)2 b
√
ε (d+ l2r)

Ar

+

(
d+ l2r

) (
2a
(
a2(b+ d)− b(b+ 2d)

)
+ b

(
−a2 + b

)
z2
ρ

)
4
√

3 (a2 − b) b2
√
εlrz2

ρ

Br

+
d
(
−a2(2b+ d) + b(2b+ 3d)

)
δ2lc√

3 (a2 − b)2 b
√
ε (1 + l2c )

Ac

+

((
a2 − b

)2
(b+ d) + ad

(
−a2(b+ d) + b(b+ 2d)

)
δ2
) (

1 + l2c
)

2
√

3 (a2 − b) b2dδ2
√
εlc

Bc

+
8lr√
3d
√
ε
T

(
− l

2
r

d

)
, (B.17)

Isd =

(
a2 − b

) (
a
(
d− l2r

)
2 + 4dl2rz

2
ρ

)
√

3ε
Cr

+

(
a2 − b

) (
−4dl2c + a2

(
1 + l2c

)
2 − b

(
1− 6l2c + l4c

)
− a

(
1 + l2c

)
2z2
ρ

)
√

3ε
Cc

−
adlrz

2
ρ

6
√

3 (a2 − b) bε3/2 (d+ l2r)
Ar

+

(
d+ l2r

) (
2a3 − 2ab− 2a2z2

ρ + bz2
ρ

)
24
√

3b2ε3/2lrz2
ρ

Br

+
dδ2lc

(
b+ a

(
−a+ z2

ρ

))
6
√

3 (a2 − b) bε3/2 (1 + l2c )
Ac

+

(
−a2(b− 2d) + b(b− d)

) (
1 + l2c

)
24
√

3b2ε3/2lc
(
2a− z2

ρ

) Bc , (B.18)

The solution for ∆ ∂µ
∂n

is more complex. We can write it in the form:

∆ ∂〈µ〉
∂〈n〉

=
3
√

3εpr
2lrdz2

ρ(d+ l2r)
C2
r +

3
√

3εpc
2δ2lc(1 + l2c )

C2
c

+
dlr pAr

4
√

3 (a2 − b)3 b2
√
ε (d+ l2r)

Ar +
(d+ l2r)pBr

16
√

3 (a2 − b)2 b3
√
εlrz2

ρ

Br

+
pAc

4
√

3 (a2 − b)3 b2
√
ε (1 + l2c )

Ac +
(1 + l2c )pBc

16
√

3 (a2 − b)2 b3
√
εlc
(
2a− z2

ρ

)Bc,
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where p-s are polynomials given by:

pr = 2a7bd6 + 2a5b2d6 − 10a3b3d6 + 6ab4d6 − 6a7d7 + 20a5bd7 + 18a3b2d7

+12a7bd5l2r − 52a5b2d5l2r + 68a3b3d5l2r − 28ab4d5l2r − 36a7d6l2r + 152a5bd6l2r

+192ab3d6l2r − 72a5d7l2r + 176a3bd7l2r − 8ab2d7l2r + 30a7bd4l4r − 98a5b2d4l4r

−38ab4d4l4r − 90a7d5l4r + 172a5bd5l4r + 14a3b2d5l4r − 96ab3d5l4r − 128a3bd6l4r

+40a7bd3l6r − 88a5b2d3l6r + 56a3b3d3l6r − 8ab4d3l6r − 120a7d4l6r + 80a5bd4l6r

−128ab3d4l6r + 144a5d5l6r − 992a3bd5l6r + 1424ab2d5l6r + 384a3d6l6r − 768abd6l6r

−98a5b2d2l8r + 106a3b3d2l8r − 38ab4d2l8r − 90a7d3l8r + 172a5bd3l8r + 14a3b2d3l8r

−128a3bd4l8r − 256ab2d4l8r + 12a7bdl10
r − 52a5b2dl10

r + 68a3b3dl10
r − 28ab4dl10

r

+152a5bd2l10
r − 308a3b2d2l10

r + 192ab3d2l10
r − 72a5d3l10

r + 176a3bd3l10
r

+2a5b2l12
r − 10a3b3l12

r + 6ab4l12
r − 6a7dl12

r + 20a5bdl12
r + 18a3b2dl12

r

−2a6bd6z2
ρ + 2a4b2d6z2

ρ + 2a2b3d6z2
ρ − 2b4d6z2

ρ + 6a6d7z2
ρ − 21a4bd7z2

ρ

+4a2b2d7z2
ρ + 11b3d7z2

ρ − 12a6bd5l2rz
2
ρ + 44a4b2d5l2rz

2
ρ − 52a2b3d5l2rz

2
ρ

+20b4d5l2rz
2
ρ + 36a6d6l2rz

2
ρ − 58a4bd6l2rz

2
ρ + 128a2b2d6l2rz

2
ρ − 106b3d6l2rz

2
ρ

−30a6bd4l4rz
2
ρ + 30a4b2d4l4rz

2
ρ + 30a2b3d4l4rz

2
ρ − 30b4d4l4rz

2
ρ + 90a6d5l4rz

2
ρ

+213a4bd5l4rz
2
ρ − 484a2b2d5l4rz

2
ρ + 181b3d5l4rz

2
ρ − 288a4d6l4rz

2
ρ + 560a2bd6l4rz

2
ρ

+112b2d6l4rz
2
ρ − 40a6bd3l6rz

2
ρ − 24a4b2d3l6rz

2
ρ + 168a2b3d3l6rz

2
ρ − 104b4d3l6rz

2
ρ

+120a6d4l6rz
2
ρ + 500a4bd4l6rz

2
ρ − 960a2b2d4l6rz

2
ρ + 340b3d4l6rz

2
ρ − 576a4d5l6rz

2
ρ

+1184a2bd5l6rz
2
ρ − 608b2d5l6rz

2
ρ − 30a6bd2l8rz

2
ρ + 30a4b2d2l8rz

2
ρ + 30a2b3d2l8rz

2
ρ

−30b4d2l8rz
2
ρ + 90a6d3l8rz

2
ρ + 213a4bd3l8rz

2
ρ − 484a2b2d3l8rz

2
ρ + 181b3d3l8rz

2
ρ

−288a4d4l8rz
2
ρ + 560a2bd4l8rz

2
ρ + 112b2d4l8rz

2
ρ − 12a6bdl10

r z
2
ρ + 44a4b2dl10

r z
2
ρ

−52a2b3dl10
r z

2
ρ + 20b4dl10

r z
2
ρ + 36a6d2l10

r z
2
ρ − 58a4bd2l10

r z
2
ρ + 128a2b2d2l10

r z
2
ρ

−106b3d2l10
r z

2
ρ − 2a6bl12

r z
2
ρ + 2a4b2l12

r z
2
ρ + 2a2b3l12

r z
2
ρ − 2b4l12

r z
2
ρ − 308a3b2d6l2r

+168a3b2d4l6r + 30a7bd2l8r − 96ab3d3l8r − 36a7d2l10
r + 2a7bl12

r − 256ab2d6l4r

−8ab2d3l10
r − 32ab3dl12

r − 32ab3d7 + 11b3dl12
r z

2
ρ + 106a3b3d4l4r + 6a6dl12

r z
2
ρ

−21a4bdl12
r z

2
ρ + 4a2b2dl12

r z
2
ρ ,
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pc = −3a6b+ a4b2 + 7a2b3 − 5b4 + 6a6d− 21a4bd+ 4a2b2d+ 11b3d− 82a6bl2c

−22a2b3l2c + 34b4l2c + 108a6dl2c − 246a4bdl2c + 16a2b2dl2c − 70b3dl2c − 301a6bl4c

+233a2b3l4c − 11b4l4c + 378a6dl4c − 171a4bdl4c − 964a2b2dl4c − 11b3dl4c − 288a4d2l4c

+112b2d2l4c − 444a6bl6c + 20a4b2l6c + 524a2b3l6c − 100b4l6c + 552a6dl6c + 236a4bdl6c

+268b3dl6c − 960a4d2l6c + 2016a2bd2l6c − 288b2d2l6c − 301a6bl8c + 79a4b2l8c

+378a6dl8c − 171a4bdl8c − 964a2b2dl8c − 11b3dl8c − 288a4d2l8c + 560a2bd2l8c

+70a4b2l10
c − 22a2b3l10

c + 34b4l10
c + 108a6dl10

c − 246a4bdl10
c

+a4b2l12
c + 7a2b3l12

c − 5b4l12
c + 6a6dl12

c − 21a4bdl12
c + 4a2b2dl12

c + 11b3dl12
c

+4a3b2z2
ρ − 2ab3z2

ρ + 52a5bl2cz
2
ρ − 40a3b2l2cz

2
ρ − 12ab3l2cz

2
ρ − 72a5dl2cz

2
ρ

+176a3bdl2cz
2
ρ − 8ab2dl2cz

2
ρ + 226a5bl4cz

2
ρ − 196a3b2l4cz

2
ρ − 30ab3l4cz

2
ρ − 11b4l8c

−288a5dl4cz
2
ρ + 480a3bdl4cz

2
ρ + 192ab2dl4cz

2
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2
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c

−304a3b2l6cz
2
ρ − 40ab3l6cz

2
ρ − 432a5dl6cz

2
ρ + 480a3bdl6cz

2
ρ + 528ab2dl6cz

2
ρ − 3a6bl12

c

+384a3d2l6cz
2
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2
ρ + 226a5bl8cz

2
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2
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2
ρ
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2
ρ + 480a3bdl8cz

2
ρ + 192ab2dl8cz

2
ρ + 52a5bl10

c z
2
ρ − 40a3b2l10

c zρ
2

−12ab3l10
c z

2
ρ − 72a5dl10

c z
2
ρ + 176a3bdl10

c z
2
ρ − 8ab2dl10

c z
2
ρ − 2a5bl12

c z
2
ρ

−70b3dl10
c + 16a2b2dl10

c − 2a5bz2
ρ + 560a2bd2l4c + 233a2b3l8c

+4a3b2l12
c z

2
ρ − 2ab3l12

c z
2
ρ − 2208a2b2dl6c + 79a4b2l4c + 112b2d2l8c ,

pAr = −2a6b+ 2a4b2 + 2a2b3 − 2b4 + 6a6d− 23a4bd+ 36a2b2d− 19b3d

+21b2d2 + 2a5bz2
ρ − 4a3b2z2

ρ + 2ab3z2
ρ − 6a5dz2

ρ + 16a3bdz2
ρ

+6a4d2 − 15a2bd2 − 10ab2dz2
ρ ,

pBr = −4a5b2 + 8a3b3 − 4ab4 − 9a5bd+ 26a3b2d− 17ab3d+ 12a5d2 − 33a3bd2

+2a4b2z2
ρ − 4a2b3z2

ρ + 2b4z2
ρ − 4a4bdz2

ρ + 12a2b2dz2
ρ − 8b3dz2

ρ + 33ab2d2 ,

pAc = 8a5b2lc − 16a3b3lc + 8ab4lc + 8a5bdlc − 32a3b2dlc + 24ab3dlc − 12a5d2lc

+32a3bd2lc − 44ab2d2lc − 4a4b2lcz
2
ρ + 8a2b3lcz

2
ρ − 4b4lcz

2
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2
ρ
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2
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2
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2
ρ ,
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pBc = 4a6b2 − 4a4b3 − 4a2b4 + 4b5 + 7a6bd− 21a4b2d+ 5a2b3d+ 9b4d− 12a6d2

−30a2b2d2 − 13b3d2 − 4a5b2z2
ρ + 8a3b3z2

ρ − 4ab4z2
ρ − 7a5bdz2

ρ + 22a3b2dz2
ρ

+12a5d2z2
ρ − 33a3bd2z2

ρ + 33ab2d2z2
ρ + 31a4bd2 − 15ab3dz2

ρ .
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