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Abstract

The electron-phonon interaction significantly affects the properties of semiconducting materials. Be-
cause of it, the phononic cloud can renormalize electrons, which leads to the emergence of polarons -
a new quasiparticle that now, instead of the electron, plays the role of the current carrier in our system.
The consequences of polaron formation are most easily studied using simplified models of electron-
phonon systems. Among these models, the simplest one is the Holstein model, which successfully
reproduces the most important polaronic effects. In practice, the Holstein model is used for testing
and developing various theoretical methods that can subsequently be applied to more complex models
or even real materials. The goal of this dissertation is to investigate the single-particle and transport
properties of the Holstein model using different methods.

Until recently, it was widely accepted that the dynamical mean-field theory (DMFT) provides a
good description of the single-particle properties of the Holstein model only in the cases of three-
dimensional or even higher-dimensional systems. However, our results show that DMFT actually
provides an excellent description of single-particle properties even in the one-dimensional case, re-
gardless of the regime, which is determined by temperature, phonon frequency, and electron-phonon
coupling strength. We have reached these conclusions by comparing the results obtained using this
method, with the most reliable results currently available in the literature. Although DMFT is approxi-
mate, it is also a nonperturbative method that is exact in two different limits: in the weak coupling limit
and in the atomic limit. Having in mind that DMFT neglects non-local correlations, which are most
pronounced in the one-dimensional case, our conclusions about the high reliability of this method are
expected to continue to hold in an arbitrary number of dimensions as well. This has been explicitly
verified on the example of the effective mass in one-, two-, and three-dimensional cases. In addition,
we have also presented a numerical procedure for the application of DMFT that requires very little
computational resources. Therefore, this method allows us to easily generate a large amount of reliable
results in different regimes, which can now be used to assess the quality of any other method. One
such method that we intend to investigate more thoroughly is the cumulant expansion (CE) Method.

In contrast to DMFT, the CE is a perturbative method that does not rely on Dyson’s equation for
the calculation of the single-particle properties. Although CE does not provide reliable results in all
regimes, the advantage of this method in comparison to the DMFT is that it can be easily applied
to significantly more complex models, and even to real materials. Therefore, it is very important to
determine in which parameter regimes can CE be expected to give an adequate description of the
observed physical system. In this dissertation, this was investigated on the example of the Holstein
model, by comparing the CE with the DMFT results, which we have already established as reliable.
It turns out that, although CE is exact only in the weak coupling and atomic limits, reliable approxi-
mate predictions of this method are possible even for moderate interactions, where the corresponding
spectral function accurately reproduces both the quasiparticle and the first satellite peak. This is signif-
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icantly better than what would be obtained using the lowest-order perturbation theory. In addition, the
high-temperature results of the CE look promising, although we proved, using the spectral sum rules,
that this method cannot be exact in the limit T → ∞.

For the study of transport properties, we focused on calculating mobility and a somewhat more
general quantity, the optical conductivity. Within the framework of linear response theory, both of these
quantities can be represented as the sum of the so-called bubble term, determined by the single-particle
properties, and vertex corrections. The bubble term for mobility µ was calculated numerically, and
detailed comparisons were made between the DMFT and CE predictions. We established that at high
temperatures, the charge mobility assumes a power law µ ∝ T−2 in the case of very weak coupling,
and µ ∝ T−3/2 for somewhat stronger coupling. We analytically proved that in the weak coupling
and atomic limits of the Holstein model, the vertex corrections of mobility are vanishing. In all other
regimes, the contribution of vertex corrections was examined numerically, by calculating the bubble
term using the DMFT and by comparing it to the exact result from the literature.

Keywords: Holstein model, electron-phonon interaction, spectral functions, quasiparticle properties,
dynamical mean field theory, cumulant expansion method, mobility, optical conductivity, vertex
corrections, spectral sum rules

Research field: Physics

Research subfield: Condensed matter physics

UDC number: 538.9
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Сажетак

Интеракциjа између електрона и фонона значаjно утиче на особине полупроводнич-
ких материjала. Захваљуjући њоj, фононски облак може ренормализовати електрон и на
таj начин довести до поjаве поларона – нове квазичестице коjа сада, уместо електрона,
постаjе носилац струjе у посматраном систему. Последице поjаве поларона наjлакше се
проучаваjу помоћу поjедностављених модела електрон-фононских система. Наjjедностав-
ниjи међу њима jе Холштаjнов модел, коjи успешно репродукуjе наjважниjе поларонске
ефекте. У пракси, Холштаjнов модел се користи за тестирање и развоj различитих теориj-
ских метода коjи накнадно могу бити примењени на сложениjе моделе или чак на реалне
материjале. Циљ ове дисертациjе jе проучавање jедночестичних и транспортних особина
Холштаjновог модела коришћењем различитих метода.

До недавно, било jе опште прихваћено да теориjа динамичког средњег поља (ТДСП)
даjе добар опис jедночестичних особина Холштаjновог модела, али само у случаjу троди-
мензионих система или система са jош већим броjем димензиjа. Међутим, наши резултати
показуjу да ТДСП заправо даjе сjаjан опис jедночестичних особина чак и у jеднодимензи-
оном случаjу, без обзира на режим коjи jе одређен температуром, фреквециjом фонона и
jачином интеракциjе између електрона и фонона. До тог закључака дошли смо поређењем
резултата овог метода са наjпоузданиjим резултатима тренутно доступних у литератури.
Иако jе ТДСП апроксимативан, он jе такође и непертурбативан метод коjи jе егзактан
у два различита лимеса: у лимесу слабе електрон-фононске интеракциjе и у атомском
лимесу. Имаjући у виду да ТДСП занемаруjе нелокалне корелациjе коjе су наjjаче у jед-
нодимензионом случаjу, може се очекивати да наши закључци о великоj поузданости овог
метода остаjу на снази у произвољном броjу димензиjа. То jе било и експлицитно провере-
но на примеру ефективне масе квазичестице у случаjу jедне, две и три димензиjе. Поред
тога, изложили смо и нумеричку процедуру коjом се ТДСП може применити коришћењем
веома мало рачунарских ресурса. Стога, оваj метод нам пружа могућност да веома jедно-
ставно генеришемо велику количину поузданих резултата у различитим режимима, коjи
сада могу служити за оцену квалитета било ког другог метода. Jедан такав метод коjи
желимо детаљниjе да испитамо зове се метод кумулантног развоjа (МКР).

МКР jе, за разлику од ТДСП, пертурбативан метод коjи се не ослања на коришће-
ње Даjсонове jедначине за израчунавање jедночестичних особина система. Иако МКР не
даjе поуздане резултате у свим режимима, предност овог метода у односу на ТДСП jе
то што се он веома лако може применити и у знатно сложениjим моделима, па чак и у
реалним материjалима. Зато jе веома важно испитати у коjим режимима се може очеки-
вати да МКР даjе адекватан опис посматраног физичког система. То jе у овоj дисертациjи
урађено на примеру Холштаjновог модела, тако што смо резултате МКР-а поредили са
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резултатима ТДСП-а, за коjе смо већ утврдили да су поуздани. Испоставља се да, иако
jе МКР егзактан само у лимесу слабе електрон-фононске интеракциjе и атомском лимесу,
поуздана апроксимативна предвиђања овог метода могућа су и за умерене интеракциjе,
где одговараjућа спектрална функциjа добро репродукуjе и квазичестични и први сате-
литски пик. То jе значаjно боље него што бисмо добили теориjом пертурбациjе наjнижег
реда. Такође, резултати МКР-а при високим температурама изгледаjу обећаваjући, али
смо коришћењем спектралних сумационих правила аналитички показали да оваj метод не
може бити егзактан у лимесу T → ∞.

За изучавање транспортних особина, усресредили смо се на рачунање покретљивости
и нешто општиjе величине, оптичке проводности. У оквиру теориjе линеарног одзива, обе
ове величине могу бити приказане као збир тзв. мехурастог члана, коjи jе одређен jедно-
честичним особинама, и тзв. вертексних корекциjа. Мехурасти члан за покретљивост µ jе
рачунат у оквиру ТДСП-а и МКР-а, и вршена су детаљна поређења. Утврдили смо да при
високим температурама, температурна зависност мобилиности задовољава µ ∝ T−2 у слу-
чаjу веома слабе интеракциjе, и µ ∝ T−3/2 у случаjу нешто jаче интеракциjе. Аналитички
jе показано да у лимесу слабе интеракциjе и у атомском лимесу нема вертексних корекци-
jа покретљивости у оквиру Холштаjновог модела. У свим осталим режимима, вертексне
корекциjе су испитиване нумерички, тако што jе поређен мехурасти члан рачунат помоћу
ДТСП-а и егзактан резултат коjи jе преузет из литературе.

Кључне речи: Холштаjнов модел, електрон-фононска интеракциjа, спектралне функ-
циjе, квазичестичне особине, теориjа динамичког средњег поља, метод кумулантног
развоjа, покретљивост, оптичка проводност, вертексне корекциjе, спектрална сума-
циона правила

Научна област: Физика

Област истраживања: Физика кондензоване материjе

УДК броj: 538.9
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Chapter 1 - Polaron Physics

1
Polaron Physics

1.1 Electron-Phonon Interaction in General
Capturing the full many-body effects in systems with electron-phonon interaction remains one of the
major ongoing challenges of the solid state physics [1–3]. Because of its ubiquity and importance for a
wide range of phenomena, understanding the impact of electron-phonon interaction continues to attract
considerable attention for both fundamental research and technical applications. The electron-phonon
interaction is responsible for the temperature dependence of carrier mobility in semiconductors, Cooper
pairing in superconductors, and a plethora of other phenomena as well [4–6]. It also enables the use of
silicon in solar cells by allowing the absorption of visible light through phonon-assisted indirect gap
transitions of electrons, which is crucial since the direct band gap of silicon is too large [7, 8]. These
and many other examples justify a widespread interest in the study of the effects of electron-phonon
interaction in a broad class of materials.

The electron-phonon system is described by the following Hamiltonian1 [1, 2]

H =
∑
nk

εnkc
†
nkcnk +

∑
qν

ωqνa
†
qνaqν +

1√
N

∑
k,q
mnν

gmnν(k,q)c
†
mk+qcnk

(
aqν + a†−qν

)
, (1.1)

where the phonon-phonon coupling and the higher order electron-phonon coupling2 (with respect to
atomic displacements) are neglected. The first term represents the free electron part of the Hamil-
tonian, with εnk and cnk being the non-interacting dispersion relation and the electron annihilation
operator, respectively. The second term is the free phonon part of the Hamiltonian. Here, ωqν is the
phonon frequency, while aqν is the phonon annihilation operator. The last term in Eq. (1.1) describes
the electron-phonon interaction, where N is the total number of unit cells of our crystal lattice and
gmnν(k,q) is the electron-phonon coupling strength.

While the electron-phonon systems can be studied both by using the ab initio methods [2] and
model Hamiltonians, this thesis will be focused on the latter. In this approach, the parameters from
Eq. (1.1) εnk, ωqν , and gmnν(k,q) are modeled such that the corresponding Hamiltonian in Eq. (1.1)
captures the most significant properties of the system we are investigating. For example, in the case
when an electron couples to long wavelength acoustical phonons, the electron-phonon coupling con-
stant is of the following form gmnν(k,q) ∝

√
|q|. Although this type of interaction is present in every

crystal, this is often neglected if there is a stronger electron-phonon coupling mechanism, such as the
piezoelectric coupling gmnν(k,q) ∝ 1√

|q|
or the Fröhlich coupling gmnν(k,q) ∝ 1

|q| [9, 10]. The latter

is responsible for the emergence of new quasiparticles, called the polarons, which represent one of the
central themes of this thesis.

1We set ℏ = 1.
2These are important for describing the temperature-dependent band structures.
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1.2 - Polaron Concept

1.2 Polaron Concept
In ionic solids and polar semiconductors, the strongest electron-phonon coupling mechanism is the
Fröhlich coupling. It arises due to the longitudinal optical oscillations of charged ionic cores which
create an electric dipole moment that strongly couples to electrons. In the field-theoretical description,
we say that the electron is renormalized due to its interaction with the cloud of phononic excitations,
thus creating a new quasiparticle called the polaron. The introduction of the polaron concept led
to a paradigm shift in which this new quasiparticle, characterized by its effective mass (which is
different from the electron band mass) and lifetime, is now the current carrier in the system and hence
significantly affects the transport properties of the material.

Historically, the origins of polaron physics can be traced back to Landau’s 1933 seminal paper
[11] in which he predicted the possibility of electron strongly distorting the crystal lattice, via the
Coulomb interaction, and getting self-trapped in thus created potential well3. Although immobile, the
electron, together with its surrounding potential well, can be recognized as an early manifestation of
what would be later termed a polaron. This work was continued by Solomon Pekar who devised the
first macroscopic semiclassical model of the polaron. Furthermore, he was the one who coined the term
polaron and realized that this quasiparticle is actually mobile [12–15]. While the polaron’s effective
mass was also calculated within this semiclassical model [16], it was clear that further progress required
a fully quantum mechanical and microscopic description of the polaron. In today’s research, the most
studied quantum models are the Fröhlich model [9, 17] and the Holstein model [18], but it should also
be noted that there were also other early attempts of quantum approaches by Pekar [19], Bogoliubov
[20] and Tyablikov [21].

1.3 Holstein Model
Although we motivated the polaron concept using the Fröhlich coupling (i.e., the Fröhlich model), the
study of polarons in this thesis will actually be conducted in the Holstein model. This is the simplest
electron-phonon model in which both the coupling and the phonon frequency from Eq. (1.1) are just
constant numbers (i.e., momentum independent) [18]. This model was most commonly used to develop
and test a variety of different many-body methods [22], which can then subsequently be used in more
complex models. Nevertheless, the Holstein molecular crystal model is also very important in order to
understand the role of polarons in real materials [23]. This is still a very active field of research fueled
by new directions in theoretical studies [4, 24–31] and advances in experimental techniques [32].

The Holstein Hamiltonian is defined as follows

H = −t0
∑
⟨ij⟩

(
c†icj +H.c

)
︸ ︷︷ ︸

Hel

−g
∑
i

ni

(
a†i + ai

)
︸ ︷︷ ︸

Hel−ph

+ω0

∑
i

a†iai︸ ︷︷ ︸
Hph

. (1.2)

Here, c†i (a
†
i ) are the electron (phonon) creation operators, t0 is the hopping parameter, g is the electron-

phonon coupling strength, ω0 is the frequency of the dispersionless optical phonons, ni = c†ici, and
the sum

∑
⟨ij⟩ goes only over the nearest neighbors i and j. We note that the parameters t0, ℏ, kB and

lattice constant will be set to 1. Furthermore, we restrict ourselves to the case when the concentration
of electrons in the system is vanishingly small4, and we treat the electrons as spinless. This is relevant
for the study of weakly doped semiconductors.

Within this model, there are four important energy scales: the temperature T , the hopping parameter
t0, the phonon frequency ω0, and the electron-phonon coupling constant g. The interplay of these

3It should be noted that Landau’s original goal was to explain the F-centers.
4As we will see in the next chapter, this can also be interpreted as if there is only a single electron in the whole crystal.
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Figure 1.1: Schematic plot of different regimes of the 1D Holstein model in the (γ, λ) parameter
space.

energy scales leads to a large number of parameter regimes. As shown in Fig. 1.1, to characterize these
regimes it is common to introduce two dimensionless parameters5

λ =
g2

ω0W/2
; γ =

ω0

W/2
, (1.3)

where W/2 is the half bandwidth. Each of these parameter regimes is characterized by different single-
particle and transport properties which, in this thesis, are investigated using the Green’s function
formalism [1, 33, 34].

1.3.1 Single Particle Properties
The central quantity for investigating the single-particle properties is the spectral functionAk(ω). If the
interaction is not too strong and the temperature is not too high, the spectral function typically consists
of a sharp quasiparticle peak (i.e., the polaron peak) and incoherent background; see Fig. 1.2. The
incoherent part can be structureless or exhibit clearly separated features which are called satellite peaks
[35]. The spectral function Ak(ω) can be interpreted as a probability density for an electron to have
an energy ω. In addition, quasiparticle properties (ground state energy, effective mass, lifetime) are
easily extracted from it (see Fig. 1.2). Furthermore, this quantity is also related to the spectrum of the
angle-resolved photoelectron spectroscopy (ARPES) experiment [32, 35–37]. This is an experimental
technique for probing a material’s band structure, in which electrons, ionized by an incident photon
beam, are analyzed in a detector. By measuring the number of detected electrons as a function of their
kinetic energy and emission angle, it extracts the information about the momentum and binding energy
of the electrons prior to ejection [35].

For the Holstein model, spectral functions can be evaluated analytically only in the weak coupling
and the atomic limits [1, 38, 39]. Other regimes have, over the years, been investigated using a large
number of numerical approaches. In particular, reliable numerical results for the ground state energy
and quasiparticle effective mass were obtained in the late 1990’s using the density matrix renormal-
ization group (DMRG) [40, 41] and path integral quantum Monte Carlo (QMC) methods [42], and
also within variational approaches [43–45]. At the time, numerically exact spectral functions for a
one-dimensional (1D) system were restricted only to the T = 0 case, and were obtained only within
the DMRG method [40, 41]. The main drawback of the QMC method is that it gives correlation func-
tions in imaginary time and obtaining spectral functions and dynamical response functions is often

5In the 1D case W/2 = 2t0, which is what we show in Fig. 1.1.

5



1.3 - Holstein Model

4 3 2 1 00

1

2

3

A k

Polaron
 peak Sattelite

 peaks

Ep 3

m0
m * 0.45

Figure 1.2: Schematic plot of the spectral function for k = 0 and T = 0, which illustrates some
of the useful properties that can be easily extracted from the spectral function. For example, we see
that the position of the polaron peak determines the ground state energy Ep, while its spectral weight
determines the renormalization of the electron mass. We note that the polaron peak is actually a Dirac
delta function in the Holstein model, but we used a Lorentzian broadening to make the figure more
illustrative.

impossible since the analytical continuation to the real frequency is numerically ill-defined procedure.
Interestingly, at finite temperatures the spectral functions were obtained only very recently using finite-
T Lanczos (FTLM) [46] and finite-T DMRG [47] methods. All these methods have their strengths
and weaknesses depending on the parameter regime and temperature. As usually happens in a strongly
interacting many-body problem, a complete physical picture emerges only by taking into account the
solutions obtained with different methods.

1.3.2 Transport Properties
Transport properties represent a step further from the investigation of just single-particle properties.
One of the most important transport properties are the charge mobility6 and more generally, the optical
conductivity. While both of these quantities are easily connected to experiments, their theoretical
calculation is a notoriously difficult task. One of the ways to calculate these quantities in more general
systems is by using the Boltzmann kinetic equation. A drawback of this approach is the fact that its
domain of validity is not very large. For example, recently studied SrTiO3 [48] and MoS2 [32] have
sufficiently strong electron-phonon interaction to fall outside the range where the Boltzmann approach
is expected to give reliable results. These shortcomings of the Boltzmann approach were overcome by
Kubo’s linear response theory, which relates the optical conductivity to the current-current correlation
function. However, it should be noted that although our task within this approach is thus reduced to the
calculation of two-particle correlation functions, the linear response theory by itself does not provide
a straightforward prescription to calculate them. In the Holstein model, various approaches have been
used for the calculation of these quantities, such as the Hierarchical equations of motion [49], Quantum
Monte Carlo [50], and many other methods as well [51–53]. However, obtaining reliable results in
real materials still presents a challenge.

In Green’s functions formalism, it is natural to express the current-current correlation function as

6The charge mobility is defined as a DC conductivity normalized to the concentration of charge carriers, and their unit
charge.
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a sum of two terms: the so-called bubble term and the so-called vertex corrections. The bubble term
is solely determined by the single-particle Green’s function and is thus, in conjunction with some
other single-particle methods, often applied even in real materials. However, the contribution of vertex
corrections is largely unknown and is often neglected without justification. This is why it is important
to examine both the capabilities of different methods to calculate the bubble part, as well as determine
the significance of vertex corrections. To answer these important questions, the Holstein model, due
to its simplicity, presents an ideal starting point.

1.4 Thesis Outline
This thesis is divided into three parts. In the remaining portion of this part, we give an overview of
some of the most basic known results concerning the single-particle properties of the Holstein model.
We consider the two limiting cases (the weak coupling limit and the atomic limit) where the exact
analytic solution is possible, and also show how the spectral sum rules are calculated in principle. In
addition, we also briefly review the mathematical formalism that we use.

In Part II, the single-particle properties are studied in detail. Motivated by the highly local (i.e.,
almost k-independent) self-energy observed in Ref. [46], an idea arose to apply the DMFT in the
Holstein model. A detailed review of this method is given in Chapter 1. In Chapter 2, we apply
and thoroughly examine the DMFT in the Holstein model. We find that it provides an excellent,
numerically cheap, approximate solution for the spectral functions and quasiparticle properties in the
whole range of parameters, in an arbitrary number of dimensions. Surprisingly, a remarkable agreement
with reliable benchmarks is observed even in 1D, where the nonlocal correlations are the strongest.
In Chapter 3, another interesting many-body technique is examined - the cumulant expansion (CE)
method. For this analysis, the DMFT was now used as a benchmark, which is justified because of our
earlier findings. Due to the perturbative nature of the CE, it is not expected that it could outperform
the DMFT. However, unlike the DMFT, the CE method is easily applied in any system, even in real
materials, in a numerically inexpensive way. This is why it is extremely important to examine the
range of validity of this increasingly popular method. As it turns out, the Holstein model is particularly
useful for this purpose.

The transport properties are studied in Part III of this thesis. In Chapter 1, we briefly review Kubo’s
linear response theory [54]. This review is continued in Chapter 2 which focuses more specifically
on the calculation of the optical conductivity. Here, we derive a variety of useful results such as the
different relations between the current-current correlation function (both in real and in imaginary time)
and the optical conductivity, the optical sum rule, the expression for the optical conductivity in the
bubble approximation in terms of the spectral functions, the proof that there are no vertex corrections
in the DMFT solution of optical conductivity, etc. The numerical results for the mobility in the bubble
approximation are presented in Chapter 3. We compare the predictions of the CE, DMFT, as well as
the (self-consistent) Migdal approximation. In addition, we analytically prove that the temperature
dependence of mobility, at high temperatures, assumes a power law behavior. In Chapter 4 we prove
the finite-temperature version of the Ward identity, and then using this result in Chapter 5 show that the
bubble approximation within the MA and SCMA is actually in accordance with the conservation of
charge. Furthermore, we demonstrate that the vertex corrections of mobility are vanishing in the cases
of weak coupling and atomic limits. The vertex corrections in other regimes are studied numerically
in Chapter. 6.
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Chapter 2 - Exploring the Holstein Model: Mathematical Foundations and Basic Results

2
Exploring the Holstein Model: Mathematical Foundations and

Basic Results

In Sec. 1.3, we introduced the Holstein model: we defined the corresponding Hamiltonian, explained
why this model continues to attract significant interest, and gave an overview of the most important
results. In this chapter, we give formal mathematical definitions of the physical quantities that represent
the backbone of this work1, and also review some basic, already known [38, 55], analytic results which
are essential for understanding the rest of this thesis.

2.1 Mathematical Foundations
The ground state energy, effective mass, spectral function, and correlation function in imaginary time
are among the most important physical properties that characterize many physical systems. All of
these quantities can be easily calculated if the one-particle Green’s function Gk(t) is known. Even
the optical conductivity, within the so-called bubble approximation, can be expressed using Gk(t).
Therefore, it is of paramount importance to establish reliable methods of calculating this quantity
within the Holstein model, for arbitrary values of parameters ω0, g and T . A detailed discussion of
these different methods will be postponed until Part II of this thesis. For now, we will give a definition
of this quantity, show how it simplifies when the electron concentration is vanishingly small, which is
the case of our interest, and briefly review how Gk(t) is connected to other physical quantities.

2.1.1 One-Particle Green’s Function: Definition

The retarded one-particle Green’s function2 is defined as

Gk (t) = −iθ (t)
〈{

ck (t) , c
†
k

}〉
T
, (2.1)

where ⟨. . . ⟩T denotes the average value in the grand canonical ensemble at temperature T , the curly
brackets {, } denote the anticommutator, while

ck(t) = eiKtcke
−iKt, and K = H − µ̃N̂ . (2.2)

Here, N̂ is the electron number operator. Although in some methods, such as the cumulant expansion,
Green’s function is calculated directly on the real-time axis, it is much more common to work with

1Except for the transport properties - these are introduced in Part III of this thesis.
2For the remainder of this thesis, the abbreviated term "Green’s function" refers to the one-particle Green’s function,

unless explicitly specified otherwise.
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methods where the calculation is predominantly carried out in the frequency space

Gk (ω) = lim
ε→0+

∫ ∞

−∞
dt ei(ω+iε)t Gk (t) . (2.3)

In fact, perturbation expansion is also usually performed in the Fourier space. The corresponding
Feynman rules can be read off directly from the Hamiltonian in Eq. (1.2), and are summarized in
Fig. 2.1.

Loop

Figure 2.1: Feynman rules for the Holstein model. The quantity δferm is equal to unity if the loop is
fermionic, white being zero otherwise.

Furthermore, the Fourier space Gk(ω) enables us to easily find the spectral function

Ak(ω) = − 1

π
ImGk(ω), (2.4)

which is closely connected to experiments through ARPES measurements. It is important to emphasize
that throughout this whole thesis, we assume that the electron concentration is vanishingly small
ne → 0. Some important simplifications arise in this limit, which we now investigate. In fact, we will
see that this limit formally allows us to work in the canonical ensemble, with only a single electron in
the entire system.

2.1.2 One-Particle Green’s Function: Simplifications in the Limit of Vanish-
ingly Small Electron Concentration ne → 0

In the grand canonical ensemble, the limit of vanishingly small concentration can be formally obtained
by setting the chemical potential to be far below the conduction band µ̃ → −∞. This limit gives
rise to some important simplifications. For example, it turns out that the phononic propagator remains
unrenormalized [56]. This is easily understood because the creation and annihilation of electron-hole
pairs are responsible for the renormalization of the phononic propagator, and there are no holes in the
limit ne → 0. As a consequence, the most general self-energy Feynman diagram consists of a single
fermion line, and an arbitrary number of attached phonon propagators. Another simplification arising
in the limit ne → 0 is that we can formally redefine the Green’s function, as if there is only a single
electron in the whole system. We discuss this further in the following text.
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Redefinition of the Green’s Function

Starting from Eq. (2.1), let us expand that expression in the energy basis, i.e., let us use the Lehmann
spectral representation

Gk(t) = −iθ(t)⟨ck(t)c†k⟩T − iθ(t)⟨c†kck(t)⟩T (2.5a)

=
−iθ(t)
Z

∑
n

⟨n|e−βKeiKtcke−iKtc†k|n⟩ −
iθ(t)

Z
∑
n

⟨n|e−βKc†keiKtcke−iKt|n⟩. (2.5b)

Here Z = Tr
[
e−βK

]
is the partition function, and |n⟩ is the energy basis K|n⟩ = Kn|n⟩. This can be

further simplified as follows

Gk(t) =
−iθ(t)
Z

∑
n

e−βKneiKnt⟨n|ck1e−iKtc†k |n⟩ −
iθ(t)

Z
∑
n

e−βKne−iKnt⟨n|c†k1eiKtck|n⟩. (2.6)

In the previous expression, we introduced the identity operator 1, which we now expand as 1 =∑
m |m⟩⟨m|, and obtain

Gk(t) =
−iθ(t)
Z

∑
n,m

e−βKnei(Kn−Km)t⟨n|ck|m⟩⟨m|c†k|n⟩

− iθ(t)

Z
∑
n,m

e−βKne−i(Kn−Km)t⟨n|c†k|m⟩⟨m|ck|n⟩. (2.7)

Since e−βKn = e−β(En−µ̃N̂), only the terms where |n⟩ has zero electrons and an arbitrary number of
phonons can give a nonzero contribution to Gk(t). The second line of Eq. (2.7) thus has to be zero,
since it contains ck|n⟩. We are left with only the first line of Eq. (2.7), which corresponds to the first
term on the right-hand side of Eq. (2.5a). Hence, we conclude that

Gk(t) =
−iθ(t)
Z

∑
n,m

e−βKnei(Kn−Km)t|⟨n|ck|m⟩|2 (2.8a)

=
−iθ(t)
Z

∑
n

⟨n|e−βKeiKtcke−iKtc†k|n⟩ (2.8b)

Furthermore, we note that the states |n⟩ with zero electrons and an arbitrary number of phonons are
also the only ones that give a contribution to the partition function

Z =
∑
n

⟨n|e−βK |n⟩ =
∑
n

e−βKn =
∑
n

e−βEneβµ̃N̂ . (2.9)

This is seen as a consequence of the factor eβµ̃N̂ , which suppresses the contribution of states with a
non-zero number of electrons in the µ̃→ ∞ limit. In the following text, this partition function, with
only the phononic contribution, will sometimes be denoted by Zp.

From Eq. (2.8a), we see that the Green’s function in Fourier space can be calculated as

Gk(ω) = − i

Z
∑
n,m

|⟨m|c†k|n⟩|2e−βKn

∫ ∞

0

dteit(ω+Kn−Km). (2.10)

The corresponding spectral function Ak(ω) = − 1
π
ImGk(ω) can be obtained using the following

identity ∫ ∞

0

dteitx = πδ(x) + iπP 1

x
, (2.11)
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giving

Ak(ω) =
1

Z
∑
n,m

e−βKn|⟨m|c†k|n⟩|2δ(ω +Kn −Km). (2.12)

We note that the states |m⟩ have to contain exactly one electron, for the matrix element in Eq. (2.12)
to be nonzero. Having in mind that the states |n⟩ have zero electrons, it follows that Kn − Km =
En − Em + µ̃. Since µ̃ → −∞, we can ensure that the spectral weight of Ak(ω) occurs at finite
frequencies if we redefine the spectral function at the end of our calculation, using the following
prescription Ak(ω) → Ak(ω + µ̃). An equivalent way to obtain the same result is to simply change
K → H . The redefined spectral function now reads as

Ak(ω) =
1

Z
∑
n,m

e−βEn|⟨m|c†k|n⟩|2δ(ω + En − Em). (2.13)

The corresponding Green’s function on a real-time axis can be directly read off from Eq. (2.8b) by
substituting K → H . We note that, since the states |n⟩ have zero electrons, we can also substitute
e−βH → e−βHph . Hence

Gk(ω) =
−iθ(t)
Zp

∑
n

⟨n|e−βHpheiHtcke
−iHtc†k|n⟩ = −iθ(t)⟨ck(t)c†k⟩T,0, (2.14)

where ck(t) is now given by ck(t) = eiHtcke
−iHt, while ⟨. . . ⟩T,0 denotes the thermal average over the

states with no electrons and an arbitrary number of phonons

⟨x⟩T,0 =
∑

n⟨n|e−Hph/Tx|n⟩∑
n⟨n|e−Hph/T |n⟩ . (2.15)

We see that with these new definitions of Green’s (and spectral) function, it is as if there is only a single
electron in the system. When using these definitions, we will say that we are working in a canonical
ensemble. In the remainder of this thesis, depending on the problem, we will often switch back and
forth between the canonical and grand canonical ensemble, but we will always take into account the
prescription Ak(ω) → Ak(ω − µ̃) that is needed to relate these two.

2.2 Weak Coupling Regime: Migdal Approximation
As we already illustrated in Fig. 1.1, the Holstein model possesses quite a few parameter regimes. In
general, finding a universal method that gives reliable results in all of these regimes is a challenging
task. This is one of the goals of this thesis. However, the aim of this chapter is to get familiar with
some already known results, originally derived by Migdal [55], which will help us to build an intuition
and a foundation upon which other approaches will be based on.

Here, we explore the weak coupling limit of the Holstein model. In this case, a perturbative
approach is possible. If g is very small, it is sufficient to take into account only the lowest-order
Feynman diagram of the self-energy. This is known as the Migdal approximation (MA) [55]. In the
grand canonical ensemble, the corresponding self-energy can be expressed as

Σk(iωn) = (2.16)

= − g2

βN

∑
q,νn

1

iωn − iνn − ξk−q

2ω0

(iνn)2 − ω2
0

, (2.17)
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2.2 - Weak Coupling Regime: Migdal Approximation

where ξk = εk − µ̃. The sum over Matsubara frequencies can be performed using the well-known
formula:

1

β

∑
νn

F (iνn) =
∑

poles of F

Res [−b(z)F (z)] (2.18)

where b(z) = 1
eβz−1

is the Bose function. In our case:

F (z) =
1

iωn − z − ξk−q

2ω0

z2 − ω2
0

=
−1

z − iωn + ξk−q

[
1

z − ω0

− 1

z + ω0

]
.

Thus, Eq. (2.17) simplifies to:

Σk(iωn) =
g2

N

∑
q

[ −b(ω0)

ω0 − iωn + ξk−q

+
b(−ω0)

−ω0 − iωn + ξk−q

]
− g2

N

∑
q

[
b(iωn − ξk−q)

iωn − ξk−q − ω0

− b(iωn − ξk−q)

iωn − ξk−q + ω0

]
The last expression can be further simplified if we use the following properties

b(−ω0) = −1− b(ω0), (2.19a)
b(iωn − ξk−q) = −f(−ξk−q) = −1 + f(ξk−q), (2.19b)

where we introduced the Fermi function f(z) = 1
eβz+1

, and take into account that we are working in
the limit of vanishing electron concentration µ̃→ −∞, in which case f(ξk−q) ≈ 0. Hence

Σk(iωn) =
g2

N

∑
q

[
nph + 1

iωn − ξk−q − ω0

+
nph

iωn − ξk−q + ω0

]
, (2.20)

where we introduced nph = b(ω0). We note that the right-hand side of the above expression is actually
independent of k. This is because the summation over q permits us to use a substitution q → k− q.
Furthermore, if we perform the Wick rotation iωn → ω + i0+, and use a prescription from Sec. 2.1.2
to formally switch to the canonical ensemble (i.e., the formalism when there is only a single electron
in the system), the self-energy acquires the following form

Σ(ω) =
g2

N

∑
q

[
nph + 1

ω − εq − ω0 + i0+
+

nph

ω − εq + ω0 + i0+

]
. (2.21)

By using the density of states ρ(ε), we can get rid of the summation over the momenta, and rewrite
the self-energy in the following form3

Σ(ω) = g2
∫
dε

[
nph + 1

ω − ε− ω0 + i0+
+

nph

ω − ε+ ω0 + i0+

]
ρ(ε). (2.22)

In Part. II of this thesis, we will see that the integrals of this type are quite relevant for a variety of
methods. These will be studied in Secs. 1.8.2 and 1.8.3 of Part II. In particular, both of the terms in
Eq. (2.22) are a special case of the much more general integral in Eq. (1.98) of Part II. Since Sec. 1.8.2
in Part II can be read independently of the other sections, we will not repeat the derivation of the
solution and just use the end result. In the case of a 1D system with only the nearest neighbor hopping,
we can use the solution in Eq. (1.108) of Part II, where we should substitute B = ω−ω0+i0+

2t0
and

B = ω+ω0+i0+

2t0
for the first and the second term in Eq. (2.22), respectively.

3We set the volume of the unit cell to 1.
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2.3 - Atomic Limit

Remark 1. Expressions in Eq. (1.106) of Part II can also be used as a solution of the integral we are
examining. However, then we always need to take into account the term i0+. In contrast, Eq. (1.108)
in Part II permits the i0+ term to be dropped. This is why the latter form of the solution is much more
convenient for numerical implementations.

We note that the solution we obtained for Σ(ω) can also be written in a more compact form

Σ(ω) = g2(nph + 1)S(ω − ω0) + g2nph S(ω + ω0), (2.23)

where S(ω) is determined by the following set of relations

S(ω) = (ω2 − 4t20)
−1/2, for ω > 0, (2.24)

ReS(−ω) = −ReS(ω), for ω > 0, (2.25)
ImS(−ω) = ImS(ω), for ω > 0. (2.26)

Remark 2. The self-energy within the Migdal approximation can also be calculated in the 2D case.
However, the analytic solution is not necessarily attainable on a general lattice. The difficulty lies
in the calculation of the real part of Σ(ω). In contrast, ImΣ(ω) can always be expressed in terms of
the noninteracting density of states. This is easily seen from Eq. (2.22), since the Plemelj-Sokhotski
theorem

1

x+ i0+
= P 1

x
− iπδ(x). (2.27)

directly implies that

ImΣ(ω) = −πg2(nph + 1)ρ(ω − ω0)− πg2nphρ(ω + ω0). (2.28)

2.3 Atomic Limit
The atomic limit corresponds to a regime where the atomic sites are completely decoupled, i.e., t0 = 0.
As a result, we can concentrate on just a single site, meaning that the relevant Hamiltonian reads as

H = −gc†c(a† + a) + ω0a
†a. (2.29)

In this case, is is known that this Hamiltonian can be diagonalized by using a unitary, Lang-Fisrov
transformation [1, 38]

U = e
g
ω0
c†c(a−a†) ≡ eS, where S ≡ g

ω0

c†c(a− a†). (2.30)

To explicitly check this, let us first investigate how does this unitary transformation affect c and a.
Using the Baker–Campbell–Hausdorff theorem, we see that

eSce−S = c+ [S, c] +
1

2!
[S, [S, c]] +

1

3!
[S, [S, [S, c]]] + . . . (2.31)

Each of these terms is calculated straightforwardly

[S, c] =

[
gc†c(a− a†)

ω0

, c

]
= − g

ω0

(a− a†){c†, c}c = − g

ω0

(a− a†)c

[S, [S, c]] =

[
gc†c

ω0

(a− a†),− g

ω0

(a− a†)c

]
=

(
−g(a− a†)

ω0

)2

c

...

[S, [S, . . . [S, c]]]︸ ︷︷ ︸
n times

=

(
−g(a− a†)

ω0

)n
c. (2.32)

13



2.3 - Atomic Limit

Hence, we obtain

eSce−S = exp

{
− g

ω0

(a− a†)

}
c. (2.33)

For a, the analysis is even simpler

eSae−S = a+ [S, a] +
1

2!
[S, [S, a]] +

1

3!
[S, [S, [S, a]]] + . . .

[S, a] =
gc†c

ω0

[a− a†, a] =
gc†c

ω0

[S, [S, a]] = 0, (2.34)

giving

eSae−S = a+
gc†c

ω0

. (2.35)

Therefore, the Hamiltonian is transformed as

eSHe−S =− geSc†e−SeSce−S
(
eSa†e−S + eSae−S

)
+ ω0e

Sa†e−SeSae−S

=− gc†e
g
ω0

(a−a†)
e
− g

ω0
(a−a†)

c

(
a† +

gc†c

ω0

+ a+
gc†c

ω0

)
+ ω0

(
a† +

gc†c

ω0

)(
a+

gc†c

ω0

)
=ω0a

†a− g2c†c

ω0

, (2.36)

where we used the fact that (c†c)2 = c†c. As we see, the Hamiltonian has been diagonalized. Its
ground-state energy can be directly read-off, and is given by

Ep = − g2

ω0

. (2.37)

One can now proceed with the calculation of the Green’s function. This is actually not completely
trivial, even though the Hamiltonian has been diagonalized, due to the fact that eSce−S and eSae−S

do not commute with each other. Nevertheless, this calculation is possible to perform completely
analytically using the Feynman disentangling of operators [1], and the result reads as

G(ω) =
∞∑
n=0

α2ne−α
2

n!

1

ω − nω0 − Ep + i0+
, for T = 0, (2.38a)

G(ω) =
∞∑

n=−∞

In

(
2α2
√
nph(nph + 1)

)
ω − nω0 − Ep + i0+

e−(2nph+1)α2+n
ω0
2T , for T ̸= 0. (2.38b)

Here, nph = (eω0/T − 1)−1, while In are the modified Bessel functions of the first kind. At T = 0, we
see that the spectrum4 consists of the polaron (ground state) delta peak at ω = Ep, which is the lowest
energy peak, and a series of delta functions at a distance ω0 from each other. Additionally, at finite
temperatures, more delta peaks emerge even below the polaron peak.

4The spectrum A(ω) = − 1
π ImG(ω) is most easily obtained using Eq. (2.27).
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2.4 - Spectral Sum Rules

2.4 Spectral Sum Rules
The nth spectral sum rule is defined as follows

Mn(k) =

∫ ∞

−∞
dωAk(ω)ω

n. (2.39)

In principle, knowing all the sum rules is equivalent to knowing the exact spectral function. Therefore,
an important characteristic of a given method is its ability to correctly reproduce the spectral sum rules.
However, as discussed by Ref. [53], it is much more important for a method to satisfy all the sum rules
with decent accuracy, than to be able to reproduce only the first few of them exactly. Nevertheless,
even the first few sum rules can give an important insight. In Part II of this thesis, we will use these to
show that the so-called cumulant expansion method is not exact in the high-temperature limit.

Within the Holstein mode, it turns out that the arbitrary sum rule can be calculated analytically. One
of the ways to do this is using the equation of motion technique, which we briefly review following
along the line of Ref [57]. To apply this technique, we first notice that Eq. (2.39) can be rewritten as

Mn(k) =

(
i
d

dt

)n ∫ ∞

−∞
dωe−iωtAk(ω)

∣∣∣∣∣
t→0

. (2.40)

Using Eq. (2.13), we obtain

Mn(k) =

(
i
d

dt

)n
1

Z
∑
n,m

e−βEn⟨n|ck|m⟩⟨m|c†k|n⟩e−it(Em−En)

∣∣∣∣∣
t→0

=

(
i
d

dt

)n
1

Z
∑
n,m

e−βEn⟨n|eiHtcke−iHt|m⟩⟨m|c†k|n⟩
∣∣∣∣∣
t→0

=

(
i
d

dt

)n
⟨ck(t)c†k⟩

∣∣∣∣∣
t→0

. (2.41)

As a consequence of the Heisenberg equation of motion dck
dt

= −i[ck , H], the above expression can
be cast into a following form

Mn(k) =

〈
[. . . [[ck , H] , H] . . . , H]︸ ︷︷ ︸

n times

c†k

〉
T

. (2.42)

Within the Holstein model, this can be evaluated for arbitrary n [57]. Although cumbersome, this
calculation is completely straightforward. The end results for 0 ≤ n ≤ 8 are listed in Sec. 2.3 of
Part II.
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Part II

Single particle properties
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1
Dynamical Mean-Field Theory

1.1 Introduction
The DMFT is a simple non-perturbative technique that has emerged as a method of choice for the
studies of the Mott physics within the Hubbard model [33, 58]. It was developed in the early 1990’s
[58] and has since significantly contributed to our understanding of the systems with strong electronic
correlations [33]. This method fully takes into account local quantum fluctuations and it becomes
exact in the limit of infinite coordination number (i.e., the limit of infinite dimensions d→ ∞), when
the correlations become completely local, meaning that the self-energy Σ(ω) becomes k-independent.
It is approximate in the case of finite-dimensional systems, but its predictions are often reliable in 3D,
where the coordination number is already quite large, such as Z = 6 in the case of a simple cubic
lattice, or Z = 12 in the case of a face-centered cubic lattice.

It turns out that the DMFT can also be applied to the Holstein model directly on the real frequency
axis [56], completely avoiding the use of numerically unstable analytical continuation. It was soon
recognized [59, 60] that the DMFT gives qualitatively correct spectral functions and conductivity for
the 3D Holstein model. Lowering the number of dimensions of the system increases the importance
of non-local correlations. Thus, one might expect that the DMFT solution would not be as accurate
in lower-dimensional systems, particularly in 1D. However, this was never explicitly checked, and
only the DMFT solution for the Bethe lattice was used in comparisons with the numerically exact
results for the ground state properties in one dimension [43, 61]. The quantitative agreement was
rather poor suggesting that the DMFT cannot provide a realistic description of the low-dimensional
Holstein model due to the importance of nonlocal correlations [39, 43, 61]. It turns out that this is
actually a misconception. The FTLM results from Ref. [46] showed that the self-energy has only small
k dependence in the 1D Holstein model, for the regime when the electron-phonon coupling strength is
comparable to the phonon frequency and the hopping parameter. Guided by this indication, we applied
the DMFT in the case of a Holstein model for the finite-dimensional hypercubic lattice [62]. We
solved the numerical instabilities that emerged, constructed a highly efficient numerical scheme, gave
a comprehensive analysis of this method, and thus explicitly demonstrated that the DMFT can in fact
give an accurate description of the single particle properties of the Holstein model in 1D. Having in
mind that 1D is the least favorable case for the DMFT since the non-local correlations are the strongest,
it is expected that reliable predictions of this method will persist in any number of dimensions as well.

In the subsequent sections of this chapter, we present a detailed review of the dynamical mean-field
theory, following Refs. [58, 63] and references therein.
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Figure 1.1: (a) Our original Holstein lattice problem. Blue and green balls represent lattice sites and
electrons, respectively. Phonons are represented as little waves on blue balls. (b) In the d→ ∞ limit
we can focus on just one single site, regarding everything else as an electron reservoir. In this limit the
problem is fully characterized using only the local Green’s function Gii and local self-energy Σii. (c)
In the d→ ∞ limit the problem can be fully mapped to the impurity problem. The figure shows one
possible scenario of the impurity’s time evolution. Since the impurity problem is characterized by the
impurity Green’s function Gimp and impurity self-energy Σimp, the mapping is realized by equating
Gii = Gimp and Σii = Σimp.

1.2 Getting to Know DMFT: An Intuitive Approach
Before giving a formal derivation of the DMFT equations in the subsequent sections, let us first try
to understand the foundational concepts using a less rigorous approach1. Since DMFT is, as noted in
Sec. 1.1, exact when d → ∞, this limit will be used to motivate the main ideas behind this method.
Let us start with the finite-dimensional Holstein lattice problem on a hypercubic lattice, shown in
Fig. 1.1(a). Since all lattice sites are equivalent, let us focus on one arbitrary lattice site, which we
call the impurity. One could now ask themselves, how does the impurity perceive its surroundings?
In 1D, 2D, and 3D cases, it sees a discrete set of sites with a finite number (2d) of nearest neighbors.
However, if we keep increasing the number of dimensions, the impurity’s surroundings starts to acquire

1This is also a convenient place to introduce the terminology that is standardly used.
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a structureless form, which we call the (electron) reservoir. Thus, it is intuitively clear2 that in the limit
d → ∞, our original Holstein lattice problem is equivalent (i.e., reduces to) an effective single-site
problem, called the (Holstein-Anderson) impurity problem; see Fig. 1.1(b). This is simpler than the
original problem, but much more sophisticated than the regular mean-field theory which reduces the
original problem to a single-particle problem. In fact, the dynamics of the impurity problem is quite
rich, and is illustrated in Fig. 1.1(c). We see that the electrons can hop back and forth between the
impurity and the reservoir, and this dynamics can be described by introducing the so-called Weiss
field G0(ω), playing the role of the dynamical (i.e., frequency-dependent) mean-field. Furthermore,
the impurity site can also accompany an arbitrary number of phonons, where the phonon frequency
and electron-phonon coupling strength remain the same as in the lattice formulation of the problem,
shown in panel 1.1(a).

The electron-phonon interaction on the impurity site is not taken into account byG0(ω), which can
thus be interpreted as a free propagator. The complete description of the impurity problem, therefore,
requires the introduction of another quantity: the full (or interacting) Green’s function Gimp(ω), which
(in the time domain) represents the probability amplitude that the electron will stay at the impurity
site. The interpretation of G0(ω) and Gimp(ω) as the free and interacting Green’s function suggests
that we could also define the impurity self-energy using the Dyson equation

Σimp(ω) = G−1
0 (ω)−G−1

imp(ω). (1.1)

Although this seems unnecessary at this point, this enables us to connect the lattice problem from
panel 1.1(a) to the impurity problem from panels 1.1(b) and 1.1(c). To accomplish this, it is natural to
require that Σimp(ω) and Gimp(ω) coincide with the corresponding quantitites from the original lattice
problem Σii(ω) and Gii(ω) respectively. This allows us to make the notation simpler in the following
text by dropping the subscripts and simply writing

Σimp(ω) = Σii(ω) = Σ(ω); Gimp(ω) = Gii(ω) = G(ω) (1.2)

While all of this will be mathematically justified in the sections to come, it is important to note that
none of this would be possible if the electron-phonon interaction was not local, meaning that all
creation and annihilation operators of the interaction terms have to correspond to the same lattice
site. Otherwise, there would be some more complicated interaction between the impurity site and the
rest of the lattice, so we could not describe the full dynamics using only the two quantities which are
connected via the Dyson equation: the self-energy Σimp (describing the interaction on the impurity
site) and the Weiss field G0 (describing the hopping, i.e., hybridization between the impurity and the
rest of the system).

We have now successfully rewritten our original lattice problem as an impurity problem. However,
two questions arise:

1. The Weiss field G0(ω) is still unknown. How can we calculate this quantity?

2. Once G0(ω) is known, how can we solve the impurity problem? Stated differently, how is the
self-energy Σ(ω) calculated in the impurity problem if G0(ω) is given?

2Although we give a rigorous proof of all of these statements in the following sections, this statement becomes much
more apparent if we note that the self-energy becomes local Σij(ω) = Σii(ω)δi,j in the limit d→ ∞. This will be proved
in Sec. 1.4 using the skeleton expansion of the self-energy and the fact that it features the Green’s functions that scale as
Gj1j2 ∝ 1/

√
Zj1j2 , where Zj1j2 represents the number of sites j2 which are equivalent to site j1. This scaling can be seen

as a consequence of the fact that Gj1j2 is interpreted as the probability amplitude for a particle to hop from between sites
j1 and j2.
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Starting with the second question, it turns out that the impurity problem can actually be solved com-
pletely analytically in terms of the continued fraction expansion. These can also be expressed as
recursion relations which are much more convenient for numerical implementations. The derivation
will be presented in Sec. 1.9, but for now we just list the results:

Σ(ω) = G−1
0 (ω)−G−1(ω), (1.3a)

G(ω) =
∞∑
n=0

(1− e−ω0/T )e−nω0/T

G−1
0 (ω)− A

(0)
n (ω)−B

(0)
n (ω)

, (1.3b)

A(p)
n (ω) =

(n− p)g2

G−1
0 (ω + (p+ 1)ω0)− A

(p+1)
n (ω)

, (1.3c)

B(p)
n (ω) =

(n+ p+ 1)g2

G−1
0 (ω − (p+ 1)ω0)−B

(p+1)
n (ω)

, (1.3d)

A(n)
n (ω) = 0, B(∞)

n (ω) = 0. (1.3e)

Eq. (1.3) is known as the impurity solver: it takesG0(ω) as an input, and provides Σ(ω) as an output. To
use it, we first need to calculate the quantities A(0)

n and B(0)
n , which are determined recursively, starting

from (1.3e) and going back to (1.3d) and (1.3c). Then, G(ω) is calculated using (1.3b), which enables
us to use Dyson Eq. (1.3a) to obtain Σ(ω). For T = 0 the equations simplify and the self-energy can
be written as

Σ(ω) = B
(0)
0 (ω). (1.4)

Rewriting it as a continued fraction, A(0)
n (ω) represents just a finite fraction that takes into account

the emission of phonons, while B(0)
n (ω) is an infinite continued fraction, which takes into account the

absorption of phonons.
Let us now go back to the first question. The Weiss field G0(ω), and thus the self-energy Σ(ω)

can be determined using the self-consistency loop, as shown in Fig. 1.2. We start by using some
initial guess for G0, and calculate Σ(ω) using the impurity solver. Then, we calculate the full Green’s
function G(ω) using

G(ω) = Gii(ω) =
1

N

∑
k

1

ω − Σ(ω)− εk
=

∫ ∞

−∞

ρ(ε) dε

ω − Σ(ω)− ε
, (1.5)

where N is the number of lattice sites, εk is the noninteracting dispersion relation, and ρ(ε) is the
noninteracting density of states. Then, the Weiss field in the next interactionGnew

0 (ω) can be calculated
via the Dyson equation. Now, we check whether

|Gnew
0 (ω)−G0(ω)| < εtol, (1.6)

where εtol is a fixed predetermined value of tolerance which is typically somewhere around εtol ∼ 10−4

or smaller. If Eq. (1.6) is satisfied, the DMFT loop terminates and Σ, G0 and G are found. Otherwise,
Gnew

0 is used in the impurity solver and the procedure is repeated until convergence is reached.
We note that the density of states ρ(ε) in Eq. (1.5) is the only place where the lattice type comes

into play. Hence, even though the DMFT equations were formally derived in the limit d → ∞, the
algorithm in Fig. 1.2 can also be used in finite-dimensional case, with appropriately chosen ρ(ε). Of
course, DMFT should then be regarded as an approximate method.
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Figure 1.2: Visualization of the DMFT algorithm which connects G0(ω), Σ(ω) and G(ω) self-
consistently. The self-energy Σ(ω) takes into account all many-body effects on the impurity site,
whereas G0(ω) is the "free" impurity propagator which incorporates the effects of all other sites. G(ω)
is the local Green’s function.

It should also be mentioned that Eq. (1.5) admits an exact solution in 1D and 2D square lattices with
nearest neighbour hopping (see Sec. 1.8):

G1D(ω) = Re
1

2t0aB(ω)
√
1− 1

B(ω)2

+ i Im
−i

2t0a
√

1−B(ω)2
. (1.7)

G2D(ω) =
K
(

2
B(ω)

)
B(ω)πt0

, (1.8)

where K(k) ≡
∫ π/2
0

dθ/
√
1− k2 sin2 θ is the complete elliptic integral of the first kind, while

B(ω) = (ω − Σ(ω))/2t0. (1.9)

In the rest of this chapter, we present a detailed derivation of the DMFT equations. We start by
discussing the limit d→ ∞.
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1.3 Renormalization of the Physical Quantities in the Limit of
Infinite Number of Dimensions d→ ∞

Building upon the heuristic treatment from Secs. 1.1 and 1.2, we now present a more formal analysis
of the limit d → ∞ [58, 63, 64]. To begin with, it is important to note that this limit cannot be
performed completely straightforwardly. Otherwise, as we will see, the kinetic energy might become
infinitely larger than the potential energy, making this limit trivial. To avoid this, we will show that it
is necessary to renormalize the hopping parameter as follows t0 → t0/

√
2d. This will turn out to have

direct consequences on the scaling of the Green’s functions (with respect to d), and most importantly
on the self-energy which ultimately proves to be momentum-independent in the d→ ∞ limit.

1.3.1 Renormalization of the Hopping Parameter in the Limit d→ ∞
Before starting our analysis it is important to point out that all energy quantities need to be normalized
with respect to the number of lattice sites (or volume) and the concentration of charge carriers ne
in order to make them finite. This is not a property of the d → ∞ limit, and needs to be done in
the finite-dimensional case as well. The normalization with respect to the concentration of charge
carriers is necessary since we are working in the limit when the chemical potential3 is µ̃ → −∞. In
the following text, we will make our phrasing concise by simply using the term (kinetic or potential)
energy, assuming that the given quantity is normalized appropriately.

Let us now determine the scaling of potential and kinetic energy with respect to d. Since the
electron-phonon interaction is local in the Holstein model, we see that the potential energy scales as
O(d0). However, the electron kinetic part is different. The corresponding noninteracting kinetic energy
can be written as

Ekin

Nne
=

∫∞
−∞ dω ωe−βωρ(ω)∫∞
−∞ dω e−βωρ(ω)

, (1.10)

where ρ(ω) is the density of states, which in the case of hypercubic lattice in d dimensions can be
expressed as follows

ρ(ω) =
1

N

∑
k

δ(ω − εk) =
1

N

∑
k

δ

(
ω + 2t0

d∑
j=1

cos kj

)

=

∫ 2π

0

· · ·
∫ 2π

0

ddk

(2π)d
δ

(
ω + 2t0

d∑
j=1

cos kj

)
, (1.11)

where we used that the noninteracting dispersion is εk = −2t0
∑d

j=1 cos kj . Let us now interpret ki as
a random variable with a probability distribution p(ki) = 1

2π
. Then, εk can be written as a sum

εk =
d∑
j=1

Yj, (1.12)

where Yj = −2t0 cos kj are also random variables, while Eq. (1.11) can be is the expectation value

ρ(ω) =

〈
δ

(
ω −

d∑
j=1

Yj

)〉
, (1.13)

3In the case when the chemical potential is finite, the normalization with respect to ne is unnecessary.
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which can be interpreted as the expectation value of the random variable εk =
∑d

j=1 Yj . Hence,
according to the central limit theorem [65], in the limit d → ∞, the density of states becomes a
Gaussian

ρ(ω) =
1

σ
√
2π
e−

ω2

2σ2 , (1.14)

where the variance is determined by

σ2 = d
〈
Y 2
〉
= 4dt20

∫ 2π

0

dk

2π
cos2 k = 2dt20. (1.15)

Plugging all of this back into Eq. (1.10), we see that the kinetic energy, in the limit of infinite number
of dimensions, becomes

Ekin

Nne
=

−βσ2e
β2σ2

2

e
β2σ2

2

= −βσ2. (1.16)

We conclude that, in order to make the kinetic energy scale the same way as the potential energy O(d0),
and in order keep the Gaussian variance finite, we need to renormalize the hopping parameter

t0 →
t0√
2d
, (1.17)

or equivalently to introduce a parameter t∗ that is finite by definition and equal to t∗ = 2dt20.

1.3.2 Renormalization of the Green’s Function in the Limit d→ ∞
Let us now inspect what are the consequences of the scaling t0 ∝ 1/

√
d on the Green’s functions

Gij(ω). Before we start, we note that in this section we will consider that the chemical potential is
a large, but finite, negative number (instead of µ̃ → −∞). For all our purposes, this is physically
equivalent, but makes the analysis somewhat easier since the energy now only needs to be normalized
with respect to the number of lattice sites, and not with respect to the charge carrier concentration. We
could have also done this in the previous section, in which case we would conclude that Ekin/N is
finite if we renormalize the hopping parameter such that t0 ∝ 1/

√
d.

1.3.2.1 Renormalization of Gij(ω) when i and j are Nearest Neighbours

The kinetic energy can be written as

Ekin = −t0
∑
i

∑
j∈δi

⟨c†icj⟩ = it0
∑
i

∑
j∈δi

Gij(t→ 0−), (1.18)

where δi denotes the sites that are nearest neighbours to site i. Since the system is translationally
invariant, we conclude that Gij = G|i−j|, implying that the sum over i in Eq. (1.18) actually contains
N identical terms. Thus, we conclude that

Ekin

N
= it0

∑
j∈δi

G|i−j|(t→ 0−). (1.19)

Since the left hand side scales as O(d0), t0 is scaled as O(d−
1
2 ), and the sum

∑
j∈δi scales as O(d),

we deduce that
Gij ∝

1√
d
, (1.20)

in the case when i and j are nearest neighbours.
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1.3.2.2 Renormalization of Gij(ω) in the Case of Arbitrary i and j

We first note that the scaling of Green’s function with respect to d should not depend on the strength
of electron-phonon coupling or the temperature. Hence, the scaling of Gij can be determined by
inspecting the free propagator at T = 0, which can be written as a resolvent [63]

Gij(ω) =
〈
i
∣∣∣ 1

ω1− t̂

∣∣∣j〉, (1.21)

where 1 is the identity matrix, and t̂ is the hopping matrix4. The scaling of the Green’s function Gij

with respect to d is thus solely a consequence of its functional dependence on t0. Therefore, one of the
ways to proceed is to calculate the leading terms, with respect to t0, of the co-factors and determinant
of the matrix ω1− t̂. The ratio of these two quantities represents the leading term of Eq. (1.21). These
are most easily calculated using∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14 . . .
a21 a22 a23 a24 . . .
a31 a32 a33 a34 . . .
a41 a42 a43 a44 . . .

...
...

...
... . . .

∣∣∣∣∣∣∣∣∣∣∣
=
∑
σ

sign(σ)a1σ(1)a2σ(2)a3σ(3)a4σ(4) . . . , (1.22)

where we sum over all possible permutations σ. Using this, we get

Gij ∝ d−
1
2
∥Ri−Rj∥, (1.23)

where ∥R−R′∥ denotes the so-called Manhattan distance. It is defined by

∥R−R′∥ =
d∑
r=1

|Rr −R′
r|. (1.24)

This result could have been expected since it is in line with our physical intuition: since the hopping
part of the Hamiltonian connects only the nearest neighbors, the particle needs ∥Ri−Rj∥ hops in order
to get from site i to site j. Due to the fact that the Green’s function between nearest neighbors scales
as 1/

√
d (see Eq. (1.20)), we could anticipate that Gij ∝ (1/

√
d)∥Ri−Rj∥. However, it is important to

note that we cannot set Gij → 0, even in the strict limit d→ ∞. This is because, although Gij gives
infinitely small contribution, there are infinitely many paths that an electron can take. Thus, the overall
contribution can be finite.

Our next task is to see what kind of implications does the scaling law of Green’s function has on
the self-energy.

1.4 Self-energy in the Limit of an Infinite Number of Dimensions
The self-energy can be written as a sum of one-particle irreducible Feynman diagrams, as shown in
the first row of Fig. 1.3. Since the Green’s functions are scaled as in Eq. (1.23), it is expected that
this will have direct consequences on the self-energy: in fact, it turns out that the self-energy is local
Σij(ω) = Σii(ω) · δi,j . In other words, the self-energy is momentum independent in the Fourier space
Σk(ω) = Σ(ω). This was originally proved by Metzner and D. Vollhardt. Here, we review the proof
of that statement.

In the first row of Fig. 1.3, the self-energy is written as a functional of the free propagator Σ[G0].
It is also possible to express it as functional of the interacting propagator Σ[G], by replacing the solid

4Hopping matrix looks the same as the Hamiltonian matrix if we set g → 0 and ω0 → 0.
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(a) (b) (c)

(d) (e)
skeleton
expansion

Figure 1.3: Feynman diagrams for the self-energy.

lines (noninteracting propagators) with double solid lines (interacting propagators), and omitting the
diagrams that have the self-energy insertions (for example, see Fig.1.4(a)) in order to avoid double
counting of the diagrams. As a result, we get the so-called skeleton expansion, which is shown in
the second row of Fig. 1.3. In Fig. 1.4 we show some diagrams that are omitted in the skeleton

(a) (b) (c) (d)

Figure 1.4: Examples of diagrams that are not included in the skeleton expansion of the self-energy.
Panel (a) is not included as the fermion line has self-energy insertion. Panels (b) and (c) do not
contribute in the limit of vanishing electron concentration, which is the case we are considering.
Otherwise, these diagrams would be included. The diagram in panel (d) is not contributing in the limit
of vanishing electron concentration, and in addition, it also has a self-energy insertion.

expansion, either due to the self-energy insertions or due to the fact that they do not contribute in
the limit of vanishing electron concentration. We note that the derivation that we present (about the
k-independence of the self-energy) will also work in the case when the electron concentration is finite,
i.e., in the case when the diagrams in Figs. 1.4(b)– 1.4(c) would be included.

To proceed, we first prove that every two vertices of the self-energy skeleton diagrams have to be
connected by at least three distinct paths. We will prove this by contradiction. Suppose that there exist
two vertices i and j (see panel 1.5(a)), in the skeleton expansion of the self-energy, that are connected
by two or less distinct paths. We immediately see that a path between these necessarily has to exist,
in order for the diagram to be connected; see Fig. 1.5(b). In fact, there also needs to be a second path
between i and j. Otherwise, the diagram would not be one-particle irreducible. All three possibilities
in which two paths can connect i and j are shown in Figs. 1.5(c1)-1.5(c3). Now, we need to establish
what happens to the rest of the fermion lines that are not connected to anything. From the form of
the bare electron-phonon vertex, we see that each fermion line is connected to either a vertex or to an
ingoing/outgoing line. Thus, two fermion lines from Figs. 1.5(c1)-1.5(c3) have to be connected to an
ingoing/outgoing line (there is only one ingoing and one outgoing line), while other two are somehow
connected. As we supposed that there is no third path that connects i and j, Figs. 1.5(d1)-1.5(d4)
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(a)

(b)

(c1) (c2) (c3)

(d1) (d2) (d3) (d4)

(e4)
(e3)(e2)

(e1)

Figure 1.5: Visual proof that every two vertices (here denoted by i and j) have to be connected by
at least three distinct paths (the blue dotted line denotes one distinct path, which does not have to go
directly from i to j, and may traverse intermediate vertices in between.).

illustrate all forms that a diagram might assume. However, each of these diagrams has a self-energy
insertion see Figs. 1.5(e1)-1.5(e4). Hence, these are not skeleton diagrams, which is a contradiction.
We conclude that the assumption must have been false, which means that there are at least three distinct
paths between each two vertices of the self-energy skeleton diagrams.

Let us now choose arbitrary vertex i, and keep it fixed. Then, for every other internal vertex j,
we need to take into account at least three distinct paths between i and j, and the summation over j.
The sites j, and thus the summation over j, can be divided into classes, such that each class consists
of mutually equivalent sites. In each of these classes, ∥Ri −Rj∥ is constant. Thus, the contribution
of propagators, going from i to j is of the order of O(d−

3
2
∥Ri−Rj∥), or less if we pass through some
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additional sites between i and j (see Eq. (1.23)). Furthermore, the contribution of the sum over the
class we are considering can be at most of the order of O(d∥Ri−Rj∥). The overall contribution for i ̸= j

is thus of the order of O(d−
1
2
∥Ri−Rj∥), or less, while it is of the order of O(d0) for i = j. From here,

we can deduce that all propagators in the skeleton expansion of the self-energy are local propagators
Gii(ω). As a consequence, we do not have to worry about the conservation of momentum at the vertices.
Furthermore, we can also see that the self-energy is diagonal in coordinate representation Σij(ω) =
Σii(ω)δi,j , i.e., momentum independent in Fourier space Σk(ω) = Σ(ω). This can be further confirmed
from the definition of Fourier transform, using the translational invariance Σi,j(ω) = Σi−j(ω)

Σk(ω) =
∑
j

eikRjΣj(ω). (1.25)

As before, we can break the sum into the sum over different classes, and a sum within each class. Then,
Σj(ω) scales as O(d−

3
2
∥Rj∥), as there are at least three paths between site 0 and j. Furthermore, the sum

over the elements of one class scales as O(d∥Rj∥). Hence, only the term j = 0 gives a nonvanishing
contribution in the limit d→ ∞, proving that the self-energy is indeed local.

Our next step is to prove that the Holstein lattice model can be mapped onto the impurity problem,
in the limit d → ∞. Before we do that, let us first reduce the number of degrees of freedom by
integrating out the phonons. This way, the rest of the derivation will be completely analogous to the
derivation in the Hubbard model.

1.5 Integrating out the Phononic Degrees of Freedom
The Hamiltonian in Eq. (1.2) defines the Holstein model. Equivalently, we can also switch to the
functional formalism, where the partition function can be written as a path integral over the electronic
and phononic degrees of freedom of e−S , where S is the action of our theory. As we will see, the
integral over the phononic degrees of freedom can be performed exactly as a consequence of the fact
that the Hamiltonian (1.2) is linear with respect to a† and a. As a result, we get an effective action,
where only the electronic degrees of freedom are left. Now the resulting electron-electron interaction
is much more complicated: although still local, it is now time (i.e., frequency) dependent. These
retardation effects are a compensation for the phonons5. Nevertheless, we will see that we can still
perform an exact mapping to the impurity problem in the limit d→ ∞. This is a consequence of the
fact that DMFT can capture temporal correlations exactly, while spatial correlations are neglected.

Let us now be more mathematically formal. Let ϕ be phononic field, and ψ Grasmann electron
field. Then, the partition function can be written as follows [66, 67]

Z =

∫
D[ψ̄, ψ]

∫
D[ϕ̄, ϕ] exp

{
−Sel[ψ̄, ψ]− Sph[ϕ̄, ϕ]− Sel−ph[ϕ̄, ϕ, ψ̄, ψ]

}
, (1.26)

where

Sel[ψ̄, ψ] =

∫ β

0

dτ

[∑
j

ψ̄j(τ)

(
∂

∂τ
− µ̃

)
ψj(τ) +Hel(ψ̄, ψ)

]
, (1.27a)

Sph[ϕ̄, ϕ] =

∫ β

0

dτ

[∑
j

ϕ̄j(τ)
∂

∂τ
ϕj(τ) +Hph(ϕ̄, ϕ)

]
, (1.27b)

Sel−ph[ϕ̄, ϕ, ψ̄, ψ] =

∫ β

0

dτHel−ph[ϕ̄, ϕ, ψ̄, ψ]. (1.27c)

5The analogous situation happens in a more familiar example of electrodynamics.
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Hel(ψ̄, ψ), Hph(ϕ̄, ϕ), and Hel−ph[ϕ̄, ϕ, ψ̄, ψ] are given by6 Eq. (1.2), after we perform the substitution
c → ψ(τ), c† → ψ̄(τ), a → ϕ(τ), and a† → ϕ̄(τ), which works both in the coordinate and Fourier
space. Let us write these out explicitly:

Hel = −t0
∑
⟨ij⟩

(
ψ̄i(τ)ψj(τ) + ψ̄j(τ)ψi(τ)

)
=
∑
k

εkψ̄k(τ)ψk(τ), (1.28a)

Hph = ω0

∑
i

ϕ̄i(τ)ϕi(τ) = ω0

∑
k

ϕ̄k(τ)ϕk(τ), (1.28b)

Hel−ph = −g
∑
i

ψ̄i(τ)ψi(τ)
(
ϕ̄i(τ) + ϕi(τ)

)
= − g√

N

∑
k,q

ψ̄k+q(τ)ψk(τ)
(
ϕ̄−q(τ) + ϕq(τ)

)
= − g√

N

∑
q

n−q(τ)
(
ϕ̄−q(τ) + ϕq(τ)

)
, (1.28c)

where nq =
∑

k ψ̄kψk+q is the Fourier transform of ni = ψ̄iψi. Let us now rewrite Eq. (1.26) as

Z =

∫
D[ψ̄, ψ]e−Sel[ψ̄,ψ]

∫
D[ϕ̄, ϕ] exp

{
−Sph[ϕ̄, ϕ]− Sel−ph[ϕ̄, ϕ, ψ̄, ψ]

}
︸ ︷︷ ︸

Z1

. (1.29)

If we integrate over ϕ̄ and ϕ, we can introduce S1 such that Z1 = const · e−S1[ψ̄,ψ], and the whole
partition function can be written as

Z = const ·
∫
D[ψ̄, ψ]e−Sel[ψ̄,ψ]e−S1[ψ̄,ψ] ≡ const ·

∫
D[ψ̄, ψ]e−Seff [ψ̄,ψ]. (1.30)

Here, we introduced the so-called effective action e−Seff [ψ̄,ψ], where the phononic degrees of freedom
have been integrated out. Calculating this quantity is the main task of this section.

To do so, we first perform the Fourier transform of the field operators from the imaginary time τ
to the Matsubara frequency space, in order to get rid of the derivative with respect to τ in Eq. (1.27)

ϕq,n =
1√
β

∫ β

0

dτϕq(τ)e
iνnτ , ϕq(τ) =

1√
β

∑
n

ϕq,ne
−iνnτ , (1.31a)

ψq,n =
1√
β

∫ β

0

dτψq(τ)e
iωnτ , ψq(τ) =

1√
β

∑
n

ψq,ne
−iωnτ , (1.31b)

where νn = 2nπT and ωn = (2n + 1)πT are the bosonic and fermionic Matsubara frequencies
respectively. Since n−q consists of two fermionic operators, it is a bosonic operator. Hence:

n−q(τ) =
1√
β

∑
n

n−q,ne
−iνnτ , (1.32a)

n−q,n =
1√
β

∫ β

0

dτn−q(τ)e
iνnτ =

1√
β

∫ β

0

dτ
∑
k

ψ̄k+q(τ)ψk(τ)e
iνnτ . (1.32b)

6We note that Eq. (1.2) is written in the 1D case, while now we need to work in the d dimensional case. This is only
reflected in Hel, which in this case reads as Hel = −t0

∑
⟨ij⟩

(
c†i cj +H.c.

)
= −∑ij tijc

†
i cj , where tij = t0 if i and j

are nearest neighbours, while otherwise being tij = 0.
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Now, plugging Eqs. (1.32), (1.31) into Eq. (1.28), and all of this into Eq. (1.27), we see that Z1 from
Eq. (1.30) can be straightforwardly calculated as follows

Z1 =

∫
D[ϕ̄, ϕ] exp

{
−
∑
q,n

ϕ̄q,n(ω0 − iνn)ϕq,n +
g√
N

∑
q,n

n−q,n

(
ϕq,−n + ϕ̄−q,n

)}
. (1.33)

The factor g/
√
N multiplies two terms: let us make the substitution n→ −n in the first of those terms

and a substitution q → −q in the second of those terms

Z1 =

∫
D[ϕ̄, ϕ] exp

{
−
∑
q,n

ϕ̄q,n(ω0 − iνn)ϕq,n +
g√
N

∑
q,n

(
n−q,−nϕq,n + nq,nϕ̄q,n

)}
. (1.34)

This is now a standard Gaussian integral that is calculated as follows∫
D[v̄, v]e−v̄Av+w̄v+v̄w

′
=

1

detA
ew̄A

−1w′
. (1.35)

Thus Z1 reduces to

Z1 =
∏
q,n

1

ω0 − iνn
exp

{
g2

N

∑
q,n

n−q,−nnq,n

ω0 − iνn

}

=
∏
q,n

1

ω0 − iνn
exp

{
g2

N

∑
q,n

ω0

ω2
0 + ν2n

n−q,−nnq,n

}
, (1.36)

where the last equality is obtained using the fact that
∑

q,n
iνn

ω2
0+ν

2
n
n−q,−nnq,n is vanishing. This is seen

as a consequence of the fact that the expression under the summation is an odd function of n. Hence,
we finally obtain an expression for Seff from Eq. (1.30)

Seff [ψ̄, ψ] = Sel[ψ̄, ψ] + S1[ψ̄, ψ] = Sel[ψ̄, ψ]− lnZ1

= Sel[ψ̄, ψ]−
g2

N

∑
q,n

ω0

ω2
0 + ν2n

n−q,−nnq,n +
∑
q,n

ln (ω0 − iνn) . (1.37)

The first and the last term represent the free electron and the free phonon action respectively, while
the middle term represents the effective electron-electron interaction. Since we are interested in the
electron Green’s function, the free phonon action is unimportant, and will hence be dropped in the
further analysis.

Let us now concentrate on the effective electron-electron interaction

Sel−el
eff [ψ̄, ψ] = −g

2

N

∑
q,n

ω0

ω2
0 + ν2n

n−q,−nnq,n. (1.38)

If we go back to the τ domain, we can explicitly see the retarded nature of effective electron-electron
interaction

Sel−el
eff [ψ̄, ψ] = −g

2

N

∑
q

ω0

ω2
0 + ν2n

1√
β

∫ β

0

dτ1
∑
k1

ψ̄k1−q(τ1)ψk1(τ1)e
iνnτ1

× 1√
β

∫ β

0

dτ2
∑
k2

ψ̄k2+q(τ2)ψk2(τ2)e
−iνnτ2 . (1.39)
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If we now recall that the phonon propagator reads as

Dq(τ − τ ′) ≡ −
〈
T̂τ

(
aq(τ) + a†−q(τ)

)(
aq(τ

′) + a†−q(τ
′)
)〉

=
1

β

∑
n

2ω0

(iνn)2 − ω2
0

e−iνn(τ−τ
′) ≡ D(τ − τ ′), (1.40)

then Eq. (1.39) can be straightforwardly transformed to

Sel−el
eff [ψ̄, ψ] =

g2

2N

∫ β

0

dτ2

∫ β

0

dτ1
∑

q,k1,k2

D(τ2 − τ1)ψ̄k2+q(τ2)ψ̄k1−q(τ1)ψk1(τ1)ψk2(τ2). (1.41)

If we now also go back from the momentum to coordinate space, the whole Seff can be written as7

Seff [ψ̄, ψ] =

∫ β

0

dτ

{∑
j

ψ̄j(τ)

(
∂

∂τ
− µ̃

)
ψj(τ)− t0

∑
⟨ij⟩

(
ψ̄i(τ)ψj(τ) + ψ̄j(τ)ψi(τ)

)
+
g2

2

∫ β

0

dτ ′D(τ − τ ′)
∑
j

ψ̄j(τ)ψ̄j(τ
′)ψj(τ

′)ψj(τ)

}
(1.42)

In order to see how this effective action is connected to the impurity problem, we use the so-called
cavity method.

1.6 Cavity Method

1.6.1 Overview
In this section, we start analyzing how is our original lattice problem connected to the impurity
problem, and how the exact mapping can be performed in the limit d→ ∞. To do this, we start from
the effective action in Eq. (1.42) (see Fig. 1.6(a)) and separate the contribution from one arbitrary
site (see Fig. 1.6(c)), its connection to the other sites (see Fig. 1.6(d)), and the rest of the lattice
(see Fig. 1.6(b)). The site we selected plays the role of the impurity site, and everything else will be
integrated over, in the functional formalism. Later, we will show that the resulting action coincides
with the action of the impurity problem in the limit d → ∞. This approach is known as the cavity
method. Let us now present a more formal, mathematical derivation.

(a) (b)

(c) (d)

Figure 1.6: Illustration of the cavity method.

7As we discussed, the free phonon part will be dropped.
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1.6.2 Cavity Construction
As we explained above, the effective action Seff can be rewritten as follows

Seff = S(0) + S0 +∆S, (1.43)

where

S(0) =

∫ β

0

dτ

{∑
i ̸=0

ψ̄i(τ)

(
∂

∂τ
− µ̃

)
ψi(τ)−

∑
i,j ̸=0

tijψ̄i(τ)ψj(τ)

+
g2

2

∫ β

0

dτ ′D(τ − τ ′)
∑
i ̸=0

ψ̄i(τ)ψ̄i(τ
′)ψi(τ

′)ψi(τ)

}
(1.44a)

S0 =

∫ β

0

dτ

{
ψ̄0(τ)

(
∂

∂τ
− µ̃

)
ψ0(τ) +

g2

2

∫ β

0

dτ ′D(τ − τ ′)ψ̄0(τ)ψ̄0(τ
′)ψ0(τ

′)ψ0(τ)

}
(1.44b)

∆S =−
∫ β

0

dτ
∑
i

[
ti0ψ̄i(τ)ψ0(τ) + t0iψ̄0(τ)ψi(τ)

]
︸ ︷︷ ︸

≡−∆S(τ)

=

∫ β

0

dτ∆S(τ). (1.44c)

In order to make the notation somewhat simpler, we introduced ∆S(τ) and also tij , that is nonzero
only when i and j are nearest neighbors, in which case it is equal to t0. Now, we want to integrate over
all ψi and ψ̄i for i ̸= 0 in Eq. (1.30). It is thus natural to rewrite the partition function as follows

Z =

∫
D[ψ̄0, ψ0]e

−S0

∫ ∏
i ̸=0

D[ψ̄i, ψi]e
−S(0)−∆S. (1.45)

While this cannot be calculated analytically in general, it is possible to express it in terms of the
Green’s functions. This can be done as follows∫ ∏

i ̸=0

D[ψ̄i, ψi]e
−S(0)−∆S =

∫ ∏
i ̸=0

D[ψ̄i, ψi]e
−S(0)

exp

{
−
∫ β

0

dτ∆S(τ)

}
=

∫ ∏
i ̸=0

D[ψ̄i, ψi]e
−S(0)

× exp

{∫ β

0

dτ
∑
j

[
tj0ψ̄j(τ)ψ0(τ) + t0jψ̄0(τ)ψj(τ)

]}
. (1.46)

Using the fact that tj0 = t0j , and introducing ηj ≡ tj0ψ0, the previous expression becomes∫ ∏
i ̸=0

D[ψ̄i, ψi]e
−S(0)−∆S =

∫ ∏
i ̸=0

D[ψ̄i, ψi]e
−S(0)

× exp

{∫ β

0

dτ
∑
j

[
η̄j(τ)ψj(τ) + ψ̄j(τ)ηj(τ)

]}
. (1.47)

We derived that the right-hand side of Eq. (1.47) is actually a generating functional [67, 68] of a
lattice with a cavity, where ηj and η̄j represent the source terms. It is thus possible to immediately
express

∫ ∏
i ̸=0D[ψ̄i, ψi]e

−S(0)−∆S in terms of the Green’s functions. However, we will employ a more
pedestrian approach.
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1.6.3 Expressing the Generating Functional in Terms of the Green’s Functions

In general, if S is the action of the theory8, then the Green’s functions are defined as

(−1)nG(n)(α1τ1 . . . αnτn|α2nτ2n . . . αn+1τn+1)

=
1

Z

∫ ∏
i

D[ψ̄αi
, ψαi

]e−S[ψ̄αi ,ψαi ]ψα1(τ1) . . . ψαn(τn)ψ̄αn+1(τn+1) . . . ψ̄α2n(τ2n)

=
1

ZTr
[
e−β(H−µ̃N̂)T̂τcα1(τ1) . . . cαn(τn)c

†
αn+1

(τn+1) . . . c
†
α2n

(τ2n)
]

=
〈
T̂τcα1(τ1) . . . cαn(τn)c

†
αn+1

(τn+1) . . . c
†
α2n

(τ2n)
〉
. (1.48)

In the last two lines, we listed the corresponding expressions in the operator formalism. These can be
used to easily switch between the functional and operator formalisms.

Going back to Eq. (1.47), we can expand the second line in the Taylor series∫ ∏
i ̸=0

D[ψ̄i, ψi]e
−S(0)−∆S

=

∫ ∏
i ̸=0

D[ψ̄i, ψi]e
−S(0)

∞∑
n=0

1

n!

[∑
j

∫ β

0

dτ
(
η̄j(τ)ψj(τ) + ψ̄j(τ)ηj(τ)

)]n
. (1.49)

If we switched back to the operator formalism, there would be averaging over the field operators for
i ̸= 0, but not for i = 0, due to the factor

∫ ∏
i ̸=0D[ψ̄i, ψi]e

−S(0) . Hence, terms with odd n in Eq. (1.49)
are necessarily vanishing, as they have odd number of creation/annihilation operators that are averaged
over. Thus∫ ∏

i ̸=0

D[ψ̄i, ψi]e
−S(0)−∆S

=

∫ ∏
i ̸=0

D[ψ̄i, ψi]e
−S(0)

∞∑
n=0

∑
j1...j2n

∫ β

0

dτj̃1 · · ·
∫ β

0

dτj̃2n
1

(2n)!

×
[
η̄j1(τj̃1)ψj1(τj̃1) + ψ̄j1(τj̃1)ηj1(τj̃1)

]
. . .
[
η̄j2n(τj̃2n)ψj2n(τj̃2n) + ψ̄j2n(τj̃2n)ηj2n(τj̃2n)

]
(1.50)

In the last line, when we multiply everything out, there are 22n terms (note that (2n)! > 22n for n > 1).
However, only terms with an equal number of creation and annihilation operators are nonzero, and
there are only

(
2n
n

)
= (2n)!/(n!)2 of these. Furthermore, all of these terms are equal. This can be seen

as a consequence of: i) the fact that both η̄ψ and ψ̄η are bosonic (i.e., commuting); ii) the fact that we
sum over j1 . . . j2n and integrate over τj̃1 . . . τj̃2n , thus we can always perform arbitrary permutation of
indices. Hence, our expression simplifies as follows∫ ∏

r ̸=0

D[ψ̄r, ψr]e
−S(0)−∆S

=

∫ ∏
r ̸=0

D[ψ̄r, ψr]e
−S(0)

∞∑
n=0

1

(2n)!

∑
i1...in

∑
j1...jn

∫ β

0

dτĩ1· · ·
∫ β

0

dτĩn

∫ β

0

dτj̃1· · ·
∫ β

0

dτj̃n

×
(
2n

n

)
η̄i1(τĩ1) . . . η̄in(τĩn)ψi1(τĩ1) . . . ψin(τĩn)ψ̄j1(τj̃1) . . . ψ̄jn(τj̃n)ηj1(τj̃1) . . . ηjn(τj̃n). (1.51)

8We are here just stating a general definition of Green’s function. This is still not restricted to the case of the lattice
with a cavity.

34



We will now move the source terms η to the left and rename the indices j1 . . . jn → jn . . . j1, such that
we obtain∫ ∏

r ̸=0

D[ψ̄r, ψr]e
−S(0)−∆S

=

∫ ∏
r ̸=0

D[ψ̄r, ψr]e
−S(0)

∞∑
n=0

1

(n!)2

∑
i1...in

∑
j1...jn

∫ β

0

dτĩ1 · · ·
∫ β

0

dτĩn

∫ β

0

dτj̃1· · ·
∫ β

0

dτj̃n

× η̄i1(τĩ1) . . . η̄in(τĩn)ηjn(τj̃n) . . . ηj1(τj̃1)ψi1(τĩ1) . . . ψin(τĩn)ψ̄jn(τj̃n) . . . ψ̄j1(τj̃1). (1.52)

The n = 0 term is just the partition function for the lattice with a cavity

Z(0) =

∫ ∏
i ̸=0

D[ψ̄i, ψi]e
−S(0)

. (1.53)

If we separate this term, Eq. (1.52) becomes∫ ∏
r ̸=0

D[ψ̄r, ψr]e
−S(0)−∆S

= Z(0) + Z(0)

∞∑
n=1

1

(n!)2

∑
i1...in

∑
j1...jn

∫ β

0

dτĩ1· · ·
∫ β

0

dτĩn

∫ β

0

dτj̃1· · ·
∫ β

0

dτj̃n

× η̄i1(τĩ1) . . . η̄in(τĩn)ηjn(τj̃n) . . . ηj1(τj̃1)

× 1

Z(0)

∫ ∏
r ̸=0

D[ψ̄r, ψr]e
−S(0)

ψi1(τĩ1) . . . ψin(τĩn)ψ̄jn(τj̃n) . . . ψ̄j1(τj̃1). (1.54)

Using Eq. (1.48), we see that the last line of the previous expression represents the cavity Green’s
function. Hence∫ ∏

r ̸=0

D[ψ̄r, ψr]e
−S(0)−∆S

= Z(0) −Z(0)

∞∑
n=1

(−1)n+1

(n!)2

∑
i1...in

∑
j1...jn

∫ β

0

dτĩ1· · ·
∫ β

0

dτĩn

∫ β

0

dτj̃1 · · ·
∫ β

0

dτj̃n

× η̄i1(τĩ1) . . . η̄in(τĩn)ηjn(τj̃n) . . . ηj1(τj̃1)G
(0)
i1...in,j1...jn

(τĩ1 . . . τĩn , τj̃1 . . . τj̃n), (1.55)

where G(0) represents the cavity Green’s function.

1.6.4 Expressing the Generating Functional in Terms of the Connected Green’s
Functions

We managed to express the left-hand side of Eq. (1.55) in terms of the cavity Green’s function. As we
already noted, this was expected, as the left-hand side is actually a generating functional. Here, we
will be more precise and define the generating functional Z(0)[η̄, η] with a proper normalization9

Z(0)[η̄, η] =
1

Z(0)

∫ ∏
i ̸=0

D[ψ̄i, ψi]e
−S(0)−∆S. (1.56)

9The generating functional is normalized such that Z(0)[0, 0] = 1
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Let us remind ourselves that we started from Eq. (1.45), with the goal to calculate the effective action10

that is obtained when the integrals over all ψi, except for i = 0, have been carried out. It is thus much
better to express Z(0)[η̄, η] as an exponential of some function. In that sense, the result we obtained in
Eq. (1.55) is not suitable in this particular form. Luckily, the solution to our problem is provided by
the linked cluster theorem [68]: it tells us that the generating functional Z(0)[η̄, η] can also be written
as an exponential of the second term in Eq. (1.55), if we substitute Z(0) → 1 and G(0) → G(0,c), where
G(0,c) is the connected Green’s function∫ ∏

r ̸=0

D[ψ̄r, ψr]e
−S(0)−∆S = Z(0)Z(0)[η̄, η]

= Z(0) · exp
{

−
∞∑
n=1

(−1)n+1

(n!)2

∑
i1...in

∑
j1...jn

∫ β

0

dτĩ1· · ·
∫ β

0

dτĩn

∫ β

0

dτj̃1 · · ·
∫ β

0

dτj̃n

× η̄i1(τĩ1) . . . η̄in(τĩn)ηjn(τj̃n) . . . ηj1(τj̃1)G
(0,c)
i1...in,j1...jn

(τĩ1 . . . τĩn , τj̃1 . . . τj̃n)

}
. (1.57)

If we now go back to Eq. (1.45), we finally obtain

S̃eff =S0 +
∞∑
n=1

(−1)n+1

(n!)2

∑
i1...in

∑
j1...jn

∫ β

0

dτĩ1· · ·
∫ β

0

dτĩn

∫ β

0

dτj̃1· · ·
∫ β

0

dτj̃n

× η̄i1(τĩ1) . . . η̄in(τĩn)ηjn(τj̃n) . . . ηj1(τj̃1)G
(0,c)
i1...in,j1...jn

(τĩ1 . . . τĩn , τj̃1 . . . τj̃n). (1.58)

1.6.5 Simplifications in the Limit d→ ∞
So far, all expressions that we derived are exact. Here, we can introduce the approximation such that
only S0 and the n = 1 term is kept in Eq. (1.58), while everything else is neglected. It turns out that
in the limit d → ∞ this is not an approximation, but actually an exact result. The main task of this
section will be to prove this statement.

First of all, we note that i1 . . . in, j1 . . . jn are all nearest neighbors to site 0. This can be seen from
the fact that ηi = ti0ψ0, and ti0 is nonzero only if i and 0 are nearest neighbors. Let us now use the
scaling laws (with respect to d) of the hopping parameter and the Green’s function, to see how the n-th
term in Eq. (1.58) behaves is the limit d→ ∞.

The n = 1 term contains ∑
ij

η̄iηjG
(0,c)
ij . (1.59)

Each source term is of the form ηi = ti0ψ0, where ti0 ∝ 1/
√
d, while G(0,c)

ij ∝ d−∥Ri−Rj∥/2. As i and
j are both nearest neighbours to site 0, and the lattice is hypercubic, we conclude: i) that we need at
least two hops to go from i to j, which implies that G(0,c)

ij ∝ 1/d; ii) that
∑

ij ∝ d2. Combining all of
this, we deduce that the n = 1 term scales as∑

ij

η̄iηjG
(0,c)
ij ∝ d2

1√
d

1√
d

1

d
∝ O(d0), (1.60)

which is finite in the limit d→ ∞.
A similar analysis can be conducted for the n = 2 term∑

i1,i2,j1,j2

η̄i1 η̄i2ηj2ηj1G
(0,c)
i1i2j1j2

. (1.61)

10We note that we use the term effective action for both the action that is obtained by integrating out the phononic
degrees of freedom and also for the action when we further integrate over ψi for i ̸= 0. In mathematical expressions these
will be denoted by Seff and S̃eff , respectively. In the text, the context will make it clear to which one we are referring.
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The only nontrivial part is to determine how does G(0,c)
i1i2j1j2

scale with respect to d. We will illustrate
this using the lowest-order Feynman diagram, shown in Fig. 1.7. From the diagram, we can read off

Figure 1.7: Lowest order Feynman diagram for connected two-particle Green’s function G(0,c)
i1i2j1j2

.

G
(0,c)
i1i2j1j2

∝
∑
r

G
(0)
i1r
G

(0)
i2r
G

(0)
j1r
G

(0)
j2r
. (1.62)

We note that i1, i2, j1, j2 are all nearest neighbors to site 0, as seen from Eq. (1.61) and the fact that
ηi ∝ ti0. If we take r from Eq. (1.62) to also be a nearest neighbor of site 0, such that it does not
coincide with any of the indices i1, i2, j1, j2, then we can conclude that: i)

∑
r ∝ d; ii) we need exactly

two hops to go from r to any one of i1, i2, j1, j2, meaning that G(0)
i1r

∝ 1/d, G(0)
i2r

∝ 1/d, G(0)
j1r

∝ 1/d,
G

(0)
j2r

∝ 1/d. Thus, the two-particle Green’s function from Eq. (1.62) scales as G(0,c)
i1i2j1j2

∝ 1/d3. Going
back to Eq. (1.61), we see that in this case, the whole term

∑
i1,i2,j1,j2

η̄i1 η̄i2ηj1ηj2G
(0,c)
i1i2j1j2

scales as
∝ d4( 1√

d
)4 1
d3

= 1
d
, which vanishes in the limit d → ∞. The same conclusion would be reached even

if r was not the nearest neighbor of site 0. Let us now analyze what happens if r coincides with one
of the indices i1, i2, j1, j2. Without the loss of generality, let us assume that r coincides with i1. Then,
Eq. (1.62) implies that

G
(0,c)
i1i2j1j2

∝ 1√
d∥Ri1

−Ri2
∥

1√
d∥Ri1

−Rj1
∥

1√
d∥Ri1

−Rj2
∥
. (1.63)

If i1, i2, j1, j2 are all different, then ∥Ri1 −Ri2∥ = ∥Ri1 −Rj1∥ = ∥Ri1 −Rj2∥ = 2, implying
that G(0,c)

i1i2j1j2
∝ 1/d3. This is completely analogous to the case we previously analyzed, so we can

immediately conclude that Eq. (1.61) scales as 1/d, which vanishes in the limit of an infinite number
of dimensions. If i1 = i2 ̸= j1 ̸= j2, then the Green’s function falls off slower G(0,c)

i1i2j1j2
∝ 1/d2, but

the sum in Eq. (1.61) now contributes only as d3. Hence, the scaling of Eq. (1.61) remains the same
∝ 1/d. The same results are obtained even for i1 = i2 = j1 ̸= j2, or i1 = i2 = j1 = j2. In these cases,
the Green’s function is falling off even slower (as the d is increased), but this is compensated by the
fact that we are summing over fewer indices, so the contribution of the sum is smaller. We conclude
that the n = 2 term completely vanishes in the limit d→ ∞.

Analogous reasoning can be used to show that all n > 1 terms in Eq. (1.58) vanish in the limit of
an infinite number of dimensions, giving

S̃eff =S0 +
∑
ij

∫ β

0

dτĩ

∫ β

0

dτj̃ η̄i(τĩ)ηj(τj̃)G
(0,c)
ij (τĩ, τj̃)

=

∫ β

0

dτ

{
ψ̄0(τ)

(
∂

∂τ
− µ̃

)
ψ0(τ) +

g2

2

∫ β

0

dτ ′D(τ − τ ′)ψ̄0(τ)ψ̄0(τ
′)ψ0(τ

′)ψ0(τ)

}
+
∑
ij

∫ β

0

dτ

∫ β

0

dτ ′ti0ψ̄0(τ)G
(0,c)
ij (τ − τ ′)ψ0(τ

′)t0j. (1.64)
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Let us now transform the first term, to be of the same form as the third term∫ β

0

dτψ̄0(τ)

(
∂

∂τ
− µ̃

)
ψ0(τ) =

∫ β

0

dτψ̄0(τ)

(
∂

∂τ
− µ̃

)∫ β

0

dτ ′δ(τ − τ ′)ψ0(τ
′)

=

∫ β

0

dτ

∫ β

0

dτ ′ψ̄0(τ)

[(
∂

∂τ
− µ̃

)
δ(τ − τ ′)

]
ψ0(τ

′). (1.65)

Hence, the effective action can be written as

S̃eff =

∫ β

0

dτ

∫ β

0

dτ ′ψ̄0(τ)

[(
∂

∂τ
− µ̃

)
δ(τ − τ ′) +

∑
ij

ti0t0jG
(0)
ij (τ − τ ′)

]
ψ0(τ

′)

+
g2

2

∫ β

0

dτ

∫ β

0

dτ ′D(τ − τ ′)ψ̄0(τ)ψ̄0(τ
′)ψ0(τ

′)ψ0(τ), (1.66)

where we substituted G(0,c)
ij → G

(0)
ij , since the one-particle Green’s function is necessarily connected.

In the following, we will see that this action has exactly the same form as the action for the Holstein-
Anderson impurity problem. Thus, our next task is to precisely define what is the Holstein-Anderson
impurity problem and to prove that its effective action coincides with Eq. (1.66). This will prove that
the mapping of the lattice model to the impurity problem is exact in the limit d→ ∞.

1.7 Holstein-Anderson Impurity Problem
In this section, we will review the model in which a site, called the impurity site, is submerged into
the so-called electron bath. The electrons in the bath are mutually noninteracting, but there exists
a hybridization between them and the impurity site. Furthermore, the impurity site can contain an
electron and phonons, while the interaction between them is of the Holstein type. Such a model is
called the Holstein-Anderson impurity problem [56]. The main goal of this section is to convince
ourselves that the action of the Holstein-Anderson impurity problem has exactly the same form as
Eq. (1.66), meaning that there exists an exact mapping between the lattice problem in the limit d→ ∞,
and the impurity problem. In the following sections, we will see that the impurity problem admits an
exact analytic solution in terms of the continued fraction expansion [56]. This implies that the d→ ∞
lattice problem can also be solved exactly.

The Hamiltonian of the Holstein-Anderson impurity problem is given by

H =
∑
k

Ekc
†
kck︸ ︷︷ ︸

Hres

+
∑
k

(
Vkc

†
kd+ V̄kd

†ck
)

︸ ︷︷ ︸
Hhybrid

+ω0a
†a︸ ︷︷ ︸

Hph

−gd†d(a+ a†)︸ ︷︷ ︸
Hint

. (1.67)

Here, we explicitly see the contribution of the electrons in the bath Hres, hybridization between the
impurity site and the bath Hhybrid, the free phonons Hph, and the interaction between the phonons and
the electrons on the impurity site Hint. Let us proceed in the functional formalism

Z =

∫
D[χ̄, χ]

∫
D[ψ̄k, ψk]

∫
D[ϕ̄, ϕ]e−S[ψ̄k,ψk,χ̄,χ,ϕ̄,ϕ], (1.68)

where S is the action, which can be written as

S[ψ̄k, ψk, χ̄, χ, ϕ̄, ϕ] = Simp[χ̄, χ] + Sres[ψ̄k, ψk] + Shybrid[ψ̄k, ψk, χ̄, χ]

+ Sph[ϕ̄, ϕ] + Sint[χ̄, χ, ϕ̄, ϕ], (1.69)
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where

Simp[χ̄, χ] =

∫ β

0

dτχ̄(τ)
∂

∂τ
χ(τ), (1.70a)

Sres[ψ̄k, ψk] =

∫ β

0

dτ
∑
k

ψ̄k(τ)

(
∂

∂τ
+ Ek

)
ψk(τ), (1.70b)

Shybrid[ψ̄k, ψk, χ̄, χ] =

∫ β

0

dτ
∑
k

(
Vkψ̄k(τ)χ(τ) + V̄kχ̄(τ)ψk

)
, (1.70c)

Sph[ϕ̄, ϕ] =

∫ β

0

dτϕ̄(τ)

(
∂

∂τ
+ ω0

)
ϕ(τ), (1.70d)

Sint[χ̄, χ, ϕ̄, ϕ] = −g
∫ β

0

dτρ(τ)
(
ϕ(τ) + ϕ̄(τ)

)
. (1.70e)

Here, ρ(τ) = χ̄(τ)χ(τ), while ψ, ϕ, χ represent the fields of the free electrons in the bath, phonons,
and electrons on the impurity site, respectively.

Let us first integrate Eq. (1.68) over the phononic degrees of freedom ϕ. These are present only
in terms Sph and Sint. As in Sec. 1.5, we will rewrite these in the Matsubara frequency space (see
Eqs. (1.31) and (1.32))

Sph[ϕ̄, ϕ] =
∑
n

ϕ̄n(ω0 − iνn)ϕn, (1.71)

Sint[χ̄, χ, ϕ̄, ϕ] = −g
∑
n

ρn
(
ϕ−n + ϕ̄n

)
. (1.72)

Hence

Z =

∫
D[χ̄, χ]

∫
D[ψ̄k, ψk]e

−Sres[ψ̄k,ψk]−Shybrid[ψ̄k,ψk,χ̄,χ]−Simp[χ̄,χ]

×
∫
D[ϕ̄, ϕ] exp

{
−
∑
n

ϕ̄n(ω0 − iνn)ϕn + g
∑
n

ρ−nϕn + g
∑
n

ρnϕ̄n

}
. (1.73)

The integral in the bottom line is completely analogous to the one in Eq. (1.34). Thus, we can simply
read off the solution from Eq. (1.36)

Z =

∫
D[χ̄, χ]

∫
D[ψ̄k, ψk]e

−Sres[ψ̄k,ψk]−Shybrid[ψ̄k,ψk,χ̄,χ]−Simp[χ̄,χ]

× 1∏
n(ω0 − iνn)

exp

{
g2
∑
n

ω0

ω2
0 + ν2n

ρnρ−n

}
. (1.74)

Next, we want to integrate over ψ. As before, we first express Sres and Shybrid in Matsubara frequency
space

Sres[ψ̄k, ψk] =
∑
k,n

ψ̄k,n(Ek − iωn)ψk,n, (1.75)

Shybrid[ψ̄k, ψk, χ̄, χ] =
∑
k,n

(
Vkψ̄k,nχn + V̄kχ̄nψk,n

)
. (1.76)
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Plugging this back into Eq. (1.74)

Z =
1∏

n(ω0 − iνn)

∫
D[χ̄, χ] exp

{
g2
∑
n

ω0

ω2
0 + ν2n

ρnρ−n

}
e−Simp[χ̄,χ]

×
∫
D[ψ̄k, ψk] exp

{
−
∑
k,n

ψ̄k,n(Ek − iωn)ψk,n −
∑
k,n

(
Vkψ̄k,nχn + V̄kχ̄nψk,n

)}
, (1.77)

where the bottom line is again the Gaussian integral. However, this time we need to take into account
that ψ is a Grasmann variable, so∫

D[ψ̄, ψ]e−ψ̄Aψ+η̄ψ+ψ̄η = detA · eη̄A−1η. (1.78)

Hence, we obtain

Z =

∏
k,m(Ek − iωm)∏
n(ω0 − iνn)

∫
D[χ̄, χ] exp

{
− Simp[χ̄, χ] + g2

∑
n

ω0

ω2
0 + ν2n

ρnρ−n

+
∑
k,n

|Vk|2χ̄n
1

Ek − iωn
χn

}
. (1.79)

If we also express Simp[χ̄, χ] in Matsubara frequency space

Simp[χ̄, χ] =
∑
n

χ̄n(−iωn)χn, (1.80)

then we can simply read off the effective impurity action

Seff = −
∑
n

χ̄n

[
iωn −

∑
k

|Vk|2
iωn − Ek

]
χn︸ ︷︷ ︸

≡−∑
n χ̄nG

−1
0 (iωn)χn

−g2
∑
n

ω0

ω2
0 + ν2n

ρnρ−n, (1.81)

where we got rid of the terms in Eq. (1.79) that correspond to free phonons and free electrons from the
reservoir, which is justified as we are interested only in the Green’s function of the electrons on the
impurity site. As indicated by the underbrace, the first term in Eq. (1.81) determines the free Green’s
function G0, which on the real-frequency axis reads as

G−1
0 (ω) = ω −

∑
k

|Vk|2
ω − Ek

. (1.82)

Let us now prove that Eq. (1.81) is of the same form as Eq. (1.66). To do so, we will rewrite
Eq. (1.81) in terms of the fields χ in the τ domain. The first term in Eq. (1.81) can thus be expressed
as follows

−
∑
n

χ̄nG
−1
0 (iωn)χn = −

∫ β

0

dτ

∫ β

0

dτ ′χ̄(τ)G−1
0 (τ − τ ′)χ(τ ′). (1.83)

Remark 3. The last expression defines G−1
0 (τ − τ ′) as an inverse Fourier transform of G−1

0 (iωn).
Although it would be clearer if these quantities were denoted differently, this is standardly done in the
literature.
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The second term in Eq. (1.81) has the same form as the right-hand side of Eq. (1.38). Therefore, using
the result in Eq. (1.41), we deduce that

−g2
∑
n

ω0

ω2
0 + ν2n

ρnρ−n =
g2

2

∫ β

0

dτ

∫ β

0

dτ ′χ̄(τ)χ̄(τ ′)χ(τ ′)χ(τ)D(τ − τ ′), (1.84)

where D(τ − τ ′) is given by Eq. (1.40). Putting all of this together

Seff = −
∫ β

0

dτ

∫ β

0

dτ ′χ̄(τ)G−1
0 (τ − τ ′)χ(τ ′)

+
g2

2

∫ β

0

dτ

∫ β

0

dτ ′χ̄(τ)χ̄(τ ′)χ(τ ′)χ(τ)D(τ − τ ′). (1.85)

Comparing Eqs. (1.81) and (1.66), we see that they have exactly the same form if we impose that

G−1
0 (τ − τ ′) = −

(
∂

∂τ
− µ̃

)
δ(τ − τ ′)−

∑
ij

ti0t0jG
(0)
ij (τ − τ ′). (1.86)

1.8 Self-consistency Condition

1.8.1 Derivation of the Self-consistency Condition

While Eq. (1.86) connects the quantities G0 and G(0)
ij , neither of these quantities are initially known.

As we will see, this requires the introduction of the self-consistently relation, which will be derived in
this section.

We start from Eq. (1.86) in Fourier space11:

G−1
0 (iωn) = µ̃+ iωn −

∑
ij

ti0t0jG
(0)
ij (iωn). (1.87)

While on the left-hand side we have G−1
0 , which is a characteristic of the impurity problem, on the

right-hand side there is G(0)
ij , which represents the Green’s function of the lattice with a cavity. We

want to relate that quantity to the quantity we started from: the Green’s function of a lattice without
cavity [58]

G
(0)
ij (iωn) = Gij(iωn)−

Gi0(iωn)G0j(iωn)

G00(iωn)
. (1.88)

This formula can be actually traced back to Hubbard [69]. Formally, it can be proved using the
expansion around the atomic limit [58, 70], but it is also quite easy to understand it intuitively: the
Green’s function Gij is interpreted as probability amplitude for the particle to propagate from j to i.
This is also true for G(0)

ij , but the electron in this case cannot propagate through site 0, because this
site was removed. Hence, G(0)

ij can be obtained from Gij by subtracting the paths that go through
0. Furthermore, in the limit we are considering d → ∞, it turns out that we only need to take into
account the paths that go once through 0, and these are given byGi0(iωn)G0j(iωn). This last expression,
however, has some double counting which is most easily explained using the example in the τ domain
as follows: if the electron was to propagate from j at τ = 0 to i at τ = τ̃ , then one possible path
is to first hop to site 0 at τ = τ̃ /3, "wait" on the site 0 until τ = 2τ̃ /3, and then hop to site i.
As we explained, this contribution needs to be subtracted from G

(0)
ij . However, in the expression

Gi0G0j , the term Gi0 takes into account paths in which the electron waits on the site 0 in the interval

11See Remark 3.
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τ ∈ (τ̃ /3, τ̃ /3 +∆t), while G0j takes into account paths in which waiting on the site 0 happens in the
interval τ ∈ (τ̃ /3 + ∆t, 2τ̃ /3). But this is an overcounting, as all of these paths for different ∆t, such
that 0 ≤ ∆t ≤ τ̃ /3, physically represent the same path in which the electron waits at the site 0 in the
interval τ ∈ (τ̃ /3, 2τ̃ /3). This overcounting can be easily taken into account in frequency space by
using the normalization G−1

00 (iωn), as we did in Eq. (1.88).
Plugging Eq. (1.88) in Eq. (1.87), we get

G−1
0 (iωn) = µ̃+ iωn −

∑
ij

ti0t0jGij(iωn) +G−1
00 (iωn)

(∑
i

ti0Gi0(iωn)

)(∑
j

t0jG0j(iωn)

)

= µ̃+ iωn −
∑
ij

ti0t0jGij(iωn) +G−1
00 (iωn)

(∑
j

tj0Gj0(iωn)

)2

. (1.89)

This can be further simplified if we use the Fourier representation of the Green’s function as∑
j

tj0Gj0(iωn) =
∑
j

tj0
1

N

∑
k

e−ikRjGk(iωn) =
∑
k

Gk(iωn)
1

N

∑
j

tj0e
−ikRj

︸ ︷︷ ︸
εk

=
1

N

∑
k

εkGk(iωn), (1.90)

and ∑
ij

ti0t0jGij(iωn) =
∑
j1j2

tj10t0j2
1

N

∑
k

e−ik(Rj1
−Rj2

)Gk(iωn)

=
1

N

∑
k

Gk(iωn)

(∑
j1

tj10e
−ikRj1

)2

︸ ︷︷ ︸
εk2

=
1

N

∑
k

ε2kGk(iωn), (1.91)

where εk is the noninteracting dispersion relation. Furthermore, since we proved that the self-energy
is local, the Green’s function is given by

Gk(iωn) =
1

iωn − εk − Σ(iωn) + µ̃
=

1

ξ − εk
, (1.92)

where we introduced the k independent parameter ξ ≡ iωn+ µ̃−Σ(iωn). Now, Eqs. (1.91) and (1.90)
can be rewritten in terms of the local Green’s function Gii =

∑
kGk(iωn)/N as

1

N

∑
k

εkGk(iωn) =
1

N

∑
k

εk − ξ + ξ

ξ − εk
=

1

N

∑
k

[−1 + ξGk(iωn)]

= −1 + ξ
1

N

∑
k

Gk(iωn) = −1 + ξGii(iωn) (1.93)

and

1

N

∑
k

ε2kGk(iωn) =
1

N

∑
k

ε2k
1

ξ − εk
=

1

N

∑
k

εk(εk − ξ) + εkξ

ξ − εk

=
ξ

N

∑
k

εk
ξ − εk

=
ξ

N

∑
k

εkGk(iωn) = −ξ + ξ2Gii(ωn), (1.94)
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where we used the fact that the noninteracting dispersion relation is symmetric, i.e.
∑

k εk = 0. Let us
now use all of these results in Eq. (1.89), to obtain

G−1
0 (iωn) = µ̃+ iωn −

[
−ξ + ξ2Gii(ωn)

]
+G−1

00 (ωn) [−1 + ξGii(iωn)]
2 . (1.95)

As a consequence of the translational symmetry Gii = G00, so the previous expression simplifies and
becomes

G−1
0 (iωn) = Σ(iωn) +G−1

ii (iωn). (1.96)

This is the self-consistency relation we were looking for. It is actually just a Dyson equation. Since
we are formulating our DMFT loop completely on the real-frequency axis, this result can be simply
analytically continued by substituting iωn → ω.

As we know, the local Green’s function Gii(ω) reads as

Gii(ω) =
1

N

∑
k

Gk(ω) =
1

N

∑
k

1

ω − εk − Σ(ω) + µ̃
. (1.97)

However, as we explained in Sec. 2.1.2 of Part I, in the limit (which we are considering) of vanishing
electron density, we need to set the chemical potential far below the conduction band µ̃→ −∞, and at
the end of the calculation redefine Σ(ω) → Σ(ω+ µ̃),G(ω) → G(ω+ µ̃). If we apply this prescription
to Eq. (1.97), and use the substitution ω → ω− µ̃, we would obtain the result that looks the same as if
the chemical potential µ̃ was simply erased

Gii(ω) =
1

N

∑
k

1

ω − εk − Σ(ω)
=

∫
dε

ρ(ε)

ω − Σ(ω)− ε
. (1.98)

In the last equality, we rewrote the result using the noninteracting density of states ρ(ε). Although this
result is exact in the limit d → ∞, it actually enables us to easily apply DMFT as an approximate
method in the finite-dimensional case as well. We just need to use the appropriate noninteracting
density of states ρ(ε).

Remark 4. The DMFT formalism is applicable both to the case of a finite and infinite number of
lattice sites N . The first equality in Eq. (1.98) is much better suited for the case of a finite N , whereas
the second equality is better for the thermodynamic limit (N → ∞).

In the following, we will see that the integral in Eq. (1.98) can be solved exactly in the case of a 1D
system and the 2D square lattice in thermodynamic limit.

1.8.2 Local Green’s Function in the 1D Case
The straightforward numerical implementation of Eq. (1.98) may encounter issues, arising from the
fact that we are working on a real frequency axis and the denominator can be very close to zero for
certain ε. In Sec. 1.8.4 we will derive a numerical scheme that solves this problem. However, in 1D
this problem can be solved even more directly, by explicitly solving the integral in Eq. (1.98).

To do so, we first need an expression for the 1D density of states ρ(ε). It is given by

ρ(ϵ) =
θ(4t20 − ϵ2)

π
√

4t20 − ϵ2
, (1.99)

where θ is the Heaviside step function. Plugging this into Eq. (1.98) and using the substitution ϵ =
2t0 sinx, we obtain

G(ω) =
1

4t0π

∫ π

−π

dx

B(ω)− sinx
, (1.100)
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where we introduced an auxiliary quantity

B(ω) =
ω − Σ(ω)

2t0
. (1.101)

Additional substitution z = eix leads us to

G(ω) =
1

4t0π

∮
|z|=1

dz

iz

1

B(ω)− 1
2i
(z − 1

z
)
=

1

2t0π

∮
|z|=1

dz

−z2 + 2izB(ω) + 1
. (1.102)

As we see, we obtained a counterclockwise complex integral over the unit circle |z| = 1. This integral
can be solved using the method of residues. To do so, we express the polynomial in the denominator
of Eq. (1.102) in its factorized form

−z2 + 2izB(ω) + 1 = −(z − z+)(z − z−), (1.103)

where z± are given by
z± = iB(ω)±

√
1−B(ω)2. (1.104)

Then, G(ω) becomes

G(ω) = − 1

2t0π

∮
|z|=1

dz

(z − z+)(z − z−)
. (1.105)

Lastly, to apply the method of residues, we need to determine which poles of the subintegral function
are inside the contour we are integrating over, i.e., we need to find out whether z± are inside the
complex unit circle |z| = 1 or not. It turns our that |z+| < 1, while |z−| > 1, meaning that only the
pole at z+ gives a non-vanishing contribution to the Eq. (1.105). This can be proved as a consequence
of the causality ImΣ(ω) < 0, since it implies that ImB(ω) > 0. Hence, the result is given by

G(ω) =
−i
t0

1

z+ − z−
=

−i
2t0
√

1−B(ω)2︸ ︷︷ ︸
≡GI(B)

=
1

2t0B(ω)
√

1− 1
B(ω)2︸ ︷︷ ︸

GII(B)

. (1.106)

In Eq. (1.106), we wrote the solution in two ways: GI and GII . They are completely equivalent in our
case when ImB(ω) > 0, but can otherwise give different results. Since B(ω) can be arbitrarily close
to the real axis, it is important to ensure additional numerical stability by requiring that the expression
for G(ω) satisfies that the ImB(ω) = 0 solution coincides with the solution in the limit ImB(ω) → 0.
Neither expression in Eq. (1.106), fully satisfies this property. However, it turns out that

Re lim
ImB→0

G(B) = ReGII(ReB) ̸= ReGI(ReB) (1.107a)

Im lim
ImB→0

G(B) = ImGI(ReB) ̸= ImGII(ReB) (1.107b)

This is illustrated in Fig. 1.8. Hence, the desired property can be obtained by combining the imaginary
and the real parts of different solutions GI and GII , as follows

G(ω) = Re
1

2t0B(ω)
√

1− 1
B(ω)2

+ i Im
−i

2t0
√

1−B(ω)2
. (1.108)
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Figure 1.8: Two different solutions for the local Green’s function in 1D. (a) Illustration that
Re limε→0G(B + iε) = ReGII(B) ̸= ReGI(B). (b) Illustration that Im limε→0G(B + iε) =
ImGI(B) ̸= ImGII(B). In both panels B ∈ R.

1.8.3 Local Green’s Function in the Case of 2D Square Lattice
Before presenting a numerical scheme for numerical implementation of Eq. (1.98), let us show that
this integral can also be solved in the case of 2D square lattice as well.

First, let us rewrite Eq. (1.98) using the Fourier representation of the density of states 12

G(ω) =

∫ ∞

−∞
dε

1

ω − Σ(ω)− ε
·
∫ ∞

−∞
dxeixερ̂(x). (1.109)

If we now interchange the order of integrals, and use the auxiliary parameter B(ω) that we defined in
Eq. (1.101), the previous expression becomes

G(ω) = −
∫ ∞

−∞
dxρ̂(x)

∫ ∞

−∞
dε

eixε

ε− 2t0B(ω)
. (1.110)

The integral over ε can be solved using the residue theorem. It is thus important to notice that the
subintegral function has only a single pole at εpole = 2t0B(ω), that is situated at the upper half-plane,
i.e. ImB(ω) > 0 (since ImΣ(ω) < 0). Hence

G(ω) = −2πi

∫ ∞

−∞
dxρ̂(x)e2ixt0B(ω)θ(x). (1.111)

Up to now, everything was general. The only place where we actually specify the lattice we are
working with is through a mathematical form of ρ̂(x), which we now calculate

ρ̂(x) =
1

2π

∫ ∞

−∞
dεe−ixερ(ε)

=
1

2π

∫ ∞

−∞
dεe−ixε · 1

N

∑
k

δ(ε− εk)

=
1

2π

∫ ∞

−∞
dεe−ixε · 1

(2π)2

∫ 2π

0

dkx

∫ 2π

0

dkyδ(ε+ 2t0 cos kx + 2t0 cos ky)

=
1

(2π)3

∫ 2π

0

dkx

∫ 2π

0

dkye
−ix(−2t0 cos kx−2t0 cos ky) =

1

2π

[
1

2π

∫ 2π

0

dke2it0x cos k
]2
. (1.112)

12The Fourier transform of ρ(ε) will be denoted by ρ̂(x)

45



Hence, recognizing the integral representation of the Bessel function J0 of the first kind of order zero,
we get

ρ̂(x) =
J0(2t0x)

2

2π
. (1.113)

Plugging this back into Eq. (1.111), we finally obtain

G(ω) =
K
(

2
B(ω)

)
B(ω)πt0

, (1.114)

where K(k) ≡
∫ π/2
0

dθ/
√
1− k2 sin2 θ is the complete elliptic integral of the first kind.

1.8.4 Numerical Scheme for Calculating the Local Green’s Function in General
case

Here we finally present a numerical procedure for the calculation of the local Green’s function (1.98)
for arbitrary density of states ρ(ϵ), that completely eliminates the potential numerical singularity that
can arise at ϵ = ω − Σ(ω).

Let us suppose that the self-energy and the density of states are known only on a finite, equidistant
grid ω0, ω1...ωN−1, where ∆ω = ωi+1 − ωi. Further, suppose that the density of states is vanishing
outside some closed interval [D1, D2] and that the grid is wide enough so that there are at least a couple
of points outside that closed interval: ρ(ω0) = ... = ρ(ω3) = 0 and ρ(ωN−1) = ... = ρ(ωN−4) = 0.
These are quite general assumptions that are always satisfied in the systems we are examining. The
local Green’s function can now be rewritten as

G(ω) =
N−2∑
i=0

∫ ωi+1

ωi

dϵ
ρ(ϵ)

ω − Σ(ω)− ϵ
. (1.115)

At each sub-interval [ωi, ωi+1] the density of states is only known at the endpoints, so it is natural to
approximate it using a linear function

ρ(ϵ) = ai + bi(ϵ− ωi), (1.116)

where13 ai = ρ(ωi), bi = (ρ(ωi+1) − ρ(ωi))/∆ω. Plugging this into Eq. (1.115), and introducing a
shorthand notation ξ = ω − Σ(ω), we analytically evaluate that

G(ω) =
N−2∑
i=0

bi(ωi − ωi+1)

+
N−2∑
i=0

ai [ln(ξ − ωi)− ln(ξ − ωi+1)]

+
N−2∑
i=0

bi(ξ − ωi) [ln(ξ − ωi)− ln(ξ − ωi+1)] . (1.117)

The first line is just a telescoping series that is vanishing

N−2∑
i=0

bi(ωi − ωi+1) = ρ(ω0)− ρ(ωN−1) = 0. (1.118)

13Since we used a grid where the first and the last few points are outside of the interval where ρ is nonzero, then
a0 = aN−2 = b0 = ... = b3 = bN−3 = ... = bN−1 = 0.
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The second line in Eq. (1.117) can be transformed by separating the two terms, shifting the indices
i+ 1 → i in the first term, and using the fact that a0 = aN−2 = 0

N−2∑
i=0

ai [ln(ξ − ωi)− ln(ξ − ωi+1)] =
N−2∑
i=1

ai ln(ξ − ωi)−
N−3∑
i=0

ai ln(ξ − ωi+1)

=
N−3∑
i=0

ai+1 ln(ξ − ωi+1)−
N−3∑
i=0

ai ln(ξ − ωi+1)

=
N−3∑
i=0

[ai+1 − ai] ln(ξ − ωi+1)

=
N−3∑
i=0

(ωi+1 − ωi)bi ln(ξ − ωi+1)

(1.119)

In the last line, we used the identity ai − ai−1 = (ωi − ωi−1)bi−1. Plugging this back into Eq. (1.117)
and using the fact that bN−2 = 0, we get:

G(ω) =
N−3∑
i=0

(ωi+1 − ωi)bi ln(ξ − ωi+1)

+
N−2∑
i=0

bi(ξ − ωi) ln(ξ − ωi)−
N−3∑
i=0

bi(ξ − ωi) ln(ξ − ωi+1)

=
N−3∑
i=0

bi(ωi+1 − ξ) ln(ξ − ωi+1) +
N−2∑
i=0

bi(ξ − ωi) ln(ξ − ωi) (1.120)

By shifting the index in the first term, and using that b0 = 0, we get:

G(ω) =
N−2∑
i=1

(bi − bi−1)(ξ − ωi) ln(ξ − ωi). (1.121)

Since we are using the equidistant grid, it follows that

bi − bi−1 =
ρ(ωi+1)− 2ρ(ωi) + ρ(ωi−1)

∆ω
. (1.122)

Finally, we obtain

G(ω) =
N−2∑
i=1

ρ(ωi+1)− 2ρ(ωi) + ρ(ωi−1)

∆ω
(ω − ωi − Σ(ω)) ln (ω − ωi − Σ(ω)) (1.123)

This expression now has no numerical instabilities. This is most easily seen from the fact that it has
the form x lnx which is well defined even in the limit x→ 0, where it vanishes. Of course, the results
were obtained by using the linear interpolation of the density of states. This is completely justified
if ρ(ϵ) is smooth or has finitely many cusps. However, the presence of van Hove singularities in ρ(ϵ)
may require some special analytical treatment around them.
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1.9 Impurity Solver
Holstein-Anderson impurity problem was introduced in Sec. 1.7. Its Hamiltonian is defined by
Eq. (1.67). We showed that the corresponding effective action of this problem can be written as
in Eq. (1.85), where the noninteracting Green’s function G0 was defined in Eq. (1.82). Now, our task
is to find the impurity Green’s function (i.e., the corresponding self-energy) for a given G0. We will
use the same notation, as in Sec. 1.7, along with some new quantities that we now introduce

K = H − µ̃Ñ (1.124a)

Ñ = d†d (1.124b)
H0 = H −Hint (1.124c)
K0 = K −Hint. (1.124d)

Remark 5. In Sec. 1.7, we integrated out the phononic degrees of freedom (that were present in Hph

and Hint) and obtained the retarded electron-electron interaction. Then, we integrated out the free
electrons, and obtained the free Green’s function G0. Hence, the free Green’s function G0 corresponds
to the Hamiltonian K−Hint−Hph = K0−Hph (from our notation, one might expect that the Green’s
function G0 corresponds to the Hamiltonian K0, but this is not the case.).

1.9.1 Expressing Green’s Function in Terms of a Resolvent of K
By definition, impurity Green’s function is given by

G(t) = −iθ(t)⟨{d(t), d†}⟩T , (1.125)

where d(t) = eiKtde−iKt, {, } is the anticommutator, and ⟨. . . ⟩T denotes the average value in the grand
canonical ensemble at temperature T . As explained in Sec. 2.1.2, in the limit of vanishing electron
concentration µ̃→ −∞, the Green’s function can also be written as

G(t) = −iθ(t)⟨d(t), d†⟩T =
−iθ(t)
Z

∑
n

⟨n|e−βKeiKtde−iKtd†|n⟩, (1.126)

Z =
∑
n

⟨n|e−βK |n⟩ =
∑
n

e−βKn , (1.127)

where |n⟩, in both Eqs. (1.126) and (1.127), represents the eigenstates of K with zero electrons and
an arbitrary number of phonons, while Kn are the corresponding eigenvalues K|n⟩ = Kn|n⟩. Hence

G(t) =
−iθ(t)
Z

∑
n

e−βKn⟨n|d e−i(K−Kn)t d†|n⟩. (1.128)

In the Fourier space, the corresponding relation reads as 14

G(ω) =
1

Z
∑
n

e−βKn⟨n|d 1

ω − (K −Kn) + i0+
d†|n⟩. (1.129)

In the case of the Holstein model Kn = nω0, giving

Z =
∑
n

e−βω0n =
1

1− e−βω0
, (1.130)

14The easiest way to see this, without calculation, is to notice that Eq. (1.128) has the same functional form as the Green
function of the free particle G(t) = −iθ(t)e−iεkt. Since the corresponding quantity in the Fourier space is known to be
G(ω) = 1

ω−εk+i0+ , we can deduce Eq. (1.129).
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and
G(ω) = (1− e−βω0)

∑
n

e−βω0n⟨n|d 1

ω + nω0 −K + i0+
d†|n⟩. (1.131)

Since |n⟩ is purely phononic state, it can be expressed as |n⟩ = (a†)n√
n!
|0⟩. Furthermore, if we introduce

auxiliary quantities Gn,m(ω), such that

Gn,m(ω) =
〈
0
∣∣∣ an√
n!
d

1

ω −K + i0+
d†

(a†)m√
m!

∣∣∣0〉, (1.132)

then the impurity Green’s function can be written as

G(ω) = (1− e−βω0)
∑
n

e−βnω0Gn,n(ω + nω0). (1.133)

In this expression, we represented the Green’s function in terms of Gn,n, while these are connected to
the resolvent. However,Gn,n are still unknown. This will be solved by rewriting Gn,n using a resolvent
of the free Hamiltonian, and then expressing such quantity in terms of G0(ω).

1.9.2 Expressing Green’s Function in Terms of a Resolvent of K0

Let us now try to express 1
ω−K+i0+

from Eq. (1.132) in terms of 1
ω−K0+i0+

. To accomplish this, we
start from this trivial identity, which is a consequence of Eq. (1.124d)

ω + i0+ −K0 = ω + i0+ −K +Hint. (1.134)

Then, we multiply both sides from the left by 1
ω+i0+−K0

and from the right by 1
ω+i0+−K . We obtain

1

ω + i0+ −K
=

1

ω + i0+ −K0

− g
1

ω + i0+ −K0

d†1d(a+ a†)
1

ω + i0+ −K
, (1.135)

where we used the definition of Hint from Eq. (1.67), and conveniently placed the identity operator 1
that will be useful later. Now, the expression for Gn,m can be obtained by multiplying both sides of
Eq. (1.135) from the left by ⟨n|d and by d†|m⟩ from the right, with |n⟩ (|m⟩) being a state with zero
electrons and n (m) phonons

⟨n|d 1

ω + i0+ −K
d†|m⟩︸ ︷︷ ︸

=Gn,m(ω)

= ⟨n|d 1

ω + i0+ −K0

d†|m⟩

− g⟨n|d 1

ω + i0+ −K0

d†1d(a+ a†)
1

ω + i0+ −K
d†|m⟩. (1.136)

By expanding the identity operator 1 =
∑

p |p⟩⟨p|, the bottom line becomes

− g⟨n|d 1

ω + i0+ −K0

d†d(a+ a†)
1

ω + i0+ −K
d†|m⟩

= −g
∑
p

⟨n|d 1

ω + i0+ −K0

d†|p⟩⟨p|d(a+ a†)
1

ω + i0+ −K
d†|m⟩. (1.137)

While |n⟩ and |m⟩ are purely phononic states, |p⟩ is initially entirely general. However, upon closer
examination of Eq. (1.137), we see that it too has to be purely phononic. This is most easily seen from
the scalar product in the bottom line

⟨n|d 1

ω + i0+ −K0

d†|p⟩, (1.138)
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and the fact that K0 conserves the number of electrons, while |n⟩ is purely phononic. If we now use
the fact that the field operators a and d commute, and utilize

a†|p⟩ =
√
p+ 1|p+ 1⟩, (1.139)

a|p⟩ = √
p|p− 1⟩, (1.140)

Eq. (1.137) becomes

− g⟨n|d 1

ω + i0+ −K0

d†d(a+ a†)
1

ω + i0+ −K
d†|m⟩

= −g
∑
p

⟨n|d 1

ω + i0+ −K0

d†|p⟩
(√

p+ 1⟨p+ 1|d 1

ω + i0+ −K
d†|m⟩

+
√
p⟨p− 1|d 1

ω + i0+ −K
d†|m⟩

)
. (1.141)

The first term in the round brackets is
√
p+ 1Gp+1,m(ω), while the second term is

√
pGp−1,m(ω).

Hence

− g⟨n|d 1

ω + i0+ −K0

d†d(a+ a†)
1

ω + i0+ −K
d†|m⟩

= −g
∑
p

⟨n|d 1

ω + i0+ −K0

d†|p⟩
(√

p+ 1Gp+1,m(ω) +
√
pGp−1,m(ω)

)
. (1.142)

Plugging this into Eq. (1.136), we find that

Gn,m(ω) = ⟨n|d 1

ω + i0+ −K0

d†|m⟩

− g
∑
p

⟨n|d 1

ω + i0+ −K0

d†|p⟩
(√

p+ 1Gp+1,m(ω) +
√
pGp−1,m(ω)

)
. (1.143)

In the following text, we will see how the resolvent ⟨n|d 1
ω+i0+−K0

d†|m⟩ can be expressed in terms of
G0. Hence, we will have a recurrence relation for Gn,m that will turn out to be solvable.

1.9.3 Expressing a Resolvent of K0 in Terms of a Free Green’s Function G0

Just as we explained in Remark 5, the free Green’s function G0(ω) corresponds to the Hamiltonian
K0 − Hph. This Hamiltonian does not have any phonons. Hence, analogous to the derivation we
presented in Sec. 1.9.1, we deduce that G0(ω) must satisfy

G0(ω) = ⟨0|d 1

ω + i0+ − (K0 −Hph)
d†|0⟩, (1.144)

as seen from Eq. (1.129) when the phononic degrees of freedom are removed. Our task is to explore
the relationship between the resolvent ⟨n|d 1

ω+i0+−K0
d†|m⟩ and Eq. (1.144):

⟨n|d 1

ω + i0+ −K0

d†|m⟩ = ⟨n|d 1

ω + i0+ − (K0 −Hph)−Hph

d†|m⟩

= ⟨0|d δn,m
(ω − nω0) + i0+ − (K0 −Hph)

d†|0⟩

= δn,mG0(ω − nω0), (1.145)

where in the second line we used that
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• |n⟩ and |m⟩ are purely phononic and eigenstates of Hph, i.e., Hph|n⟩ = nω0|n⟩.

• [K0, Hph] = 0

• There are no phonons in the Hamiltonian K0 −Hph

1.9.4 Recurrence Relation for Gn,m

If we plug Eq. (1.145) into Eq. (1.143), we finally obtain a Recurrence relation for Gn,m

Gn,m(ω) = δn,mG0(ω − nω0)− g
∑
p

δn,pG0(ω − nω0)
(√

p+ 1Gp+1,m(ω) +
√
pGp−1,m(ω)

)
= δn,mG0(ω − nω0)− gG0(ω − nω0)

(√
n+ 1Gn+1,m(ω) +

√
nGn−1,m(ω)

)
= δn,mG0(ω − nω0)− gG0(ω − nω0)

∑
p

(√
pδn,p−1 +

√
p+ 1δn,p+1

)
Gp,m(ω). (1.146)

If we use a shorthand notation

Gn,m ≡ Gn,m(ω)

G0n ≡ G0(ω − nω0) (1.147a)

Xn,p ≡
√
p+ 1δn,p+1 +

√
pδn,p−1, (1.147b)

then Eq. (1.146) can be written as

Gn,m = G0nδn,m − g
∑
p

G0nXn,pGp,m. (1.148)

Furthermore, if we introduce the matrices G̃, G̃0, and X̃ , such that their elements in the n-th row and
m-th column of the matrix are given by Gn,m, G0nδn,m, and Xn,m, respectively, then the recurrence
relation acquires the following form

G̃ = G̃0 − gG̃0X̃G̃. (1.149)

This looks like the Dyson equation. We solve it by rewriting it as(
1 + gG̃0X̃

)
G̃ = G̃0, (1.150)

and multiplying this whole expression by G̃−1
0 from the left and by G̃−1 from the right

G̃−1 = G̃−1
0 + gX̃

=



G−1
0 (ω) g

√
1 0 0 0 . . .

g
√
1 G−1

0 (ω − ω0) g
√
2 0 0 . . .

0 g
√
2 G−1

0 (ω − 2ω0) g
√
3 0 . . .

0 0 g
√
3 G−1

0 (ω − 3ω0) g
√
4 . . .

0 0 0 g
√
4 G−1

0 (ω − 4ω0) . . .
...

...
...

...
... . . .


. (1.151)

Hence, Gn,m is found by inverting this large matrix.
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1.9.5 Final Solution of the Impurity Problem

Finite-Temperature Case

Let us now go back to Eq. (1.133). We see that we actually only need Gn,m for n = m. To find these,
we need to invert the matrix in Eq. (1.151) and take its n-th diagonal element. But this matrix is a
symmetric tridiagonal matrix! A detailed solution of this problem, for a general symmetric tridiagonal
matrix, was already presented in Appendix. D. Therefore, we apply Eq. (D.12), setting b2n = ng2 and
an = G−1

0 (ω− nω0), and finally obtain the solution of the impurity problem in terms of the continued
fraction expansion.

G(ω) = (1− e−βω0)
∑
n

e−βnω0Gn,n(ω + nω0), (1.152a)

Gn,n(ω + nω0) =
1

G−1
0 (ω)− An(ω)−Bn(ω)

, (1.152b)

An(ω) =
ng2

G−1
0 (ω + ω0)− (n−1)g2

G−1
0 (ω+2ω0)− (n−2)g2

...
G−1
0 (ω+(n−1)ω0)−

g2

G−1
0 (ω+nω0)

, (1.152c)

Bn(ω) =
(n+ 1)g2

G−1
0 (ω − ω0)− (n+2)g2

G−1
0 (ω−2ω0)− (n+3)g2

G−1
0 (ω−3ω0)−

(n+4)g2

...

. (1.152d)

At last, the self-energy is obtained via the Dyson equation

Σ(ω) = G−1
0 (ω)−G−1(ω). (1.153)

Zero-Temperature Case

In the limit T → 0 (i.e., β → ∞), only the n = 0 term is contributing. Since A0(ω) = 0, we conclude
that

G(ω) = G0,0(ω) =
1

G−1
0 (ω)−B0(ω)

. (1.154)

Furthermore, using the Dyson equation, the self-energy reads as

Σ(ω)
∣∣∣
T=0

=
g2

G−1
0 (ω − ω0)− 2g2

G−1
0 (ω−2ω0)− 3g2

G−1
0 (ω−3ω0)−

4g2

...

. (1.155)

Remark 6. In the atomic limit (t0 = 0), the Holstein lattice problem actually reduces to the Holstein-
Anderson impurity problem, defined by Eq. (1.67), with Ek = Vk = 0. Hence, the expressions that we
derived in this section actually represent the exact solution in the atomic limit, if we set G−1

0 (ω) = ω,
as seen from Eq. (1.82).

1.9.6 Numerical Implementation of the Impurity Solver
The solution of the impurity problem (1.152) requires the calculation of continued fractions. Nu-
merically, these quantities are calculated using iterative procedures that we formulate in the form of
theorems:

52



Theorem 1. Let

• A(n)
n (ω) ≡ 0 and A(k)

n (ω) ≡ 0, for k ≥ n.

• A(p)
n (ω) = (n−p)g2

G−1
0 (ω+(p+1)ω0)−A(p+1)

n (ω)
, for p < n,

Then An(ω) = A
(0)
n (ω).

Proof. Formally, this is proved using the method of induction. However, we will be less rigorous

A(0)
n (ω) =

ng2

G−1
0 (ω + ω0)− A

(1)
n (ω)

=
ng2

G−1
0 (ω + ω0)− (n−1)g2

G−1
0 (ω+2ω0)−A(2)

n (ω)

= . . .

=
ng2

G−1
0 (ω + ω0)− (n−1)g2

G−1
0 (ω+2ω0)− (n−2)g2

...
G−1
0 (ω+(n−1)ω0)−A

(n−1)
n (ω)

=
ng2

G−1
0 (ω + ω0)− (n−1)g2

G−1
0 (ω+2ω0)− (n−2)g2

...
G−1
0 (ω+(n−1)ω0)−

g2

G−1
0 (ω+nω0)

. (1.156)

This completes our proof.

Theorem 2. Let

• B(k=∞)
n (ω) ≡ 0,

• B(k)
n (ω) = (n+k+1)g2

G−1
0 (ω−(p+1)ω0)−B(k+1)

n (ω)

Then Bn(ω) = B
(0)
n (ω).

Proof. This is also formally proved using the method of induction, but for the sake of brevity, we
employ a less rigorous approach

B(0)
n (ω) =

(n+ 1)g2

G−1
0 (ω − ω0)−B

(1)
n (ω)

=
(n+ 1)g2

G−1
0 (ω − ω0)− (n+2)g2

G−1
0 (ω−2ω0)−B(2)

n (ω)

= . . .

=
(n+ 1)g2

G−1
0 (ω − ω0)− (n+2)g2

G−1
0 (ω−2ω0)− (n+3)g2

G−1
0 (ω−3ω0)−

(n+4)g2

...

= Bn(ω). (1.157)

This completes our derivation of DMFT equations.
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2
Dynamical Mean-Field Theory: Numerical Results

The results that we present in this chapter are a product of our work that we published in Ref. [62].

2.1 Quasiparticle Properties
The quasiparticle properties (the ground state energy and the effective mass) are simple, yet important
characteristics of a given physical system. There are various ways to obtain these quantities, but we
will calculate them from the Green’s functions formalism, as it will help us in assessing the quality of
the DMFT method.

The DMFT method gives the k-independent self-energy Σ(ω), from which the Green’s function
can be calculated as

Gk(ω) =
1

ω − εk − Σ(ω)
. (2.1)

The quasiparticle properties are encoded in the pole structure of this quantity, as guaranteed by the
Lehmann spectral representation. Since there is only a single electron in the band, the Fermi wavevector
is zero. Hence, to evaluate the ground-state energyEp, we need to find the smallest ω, which we denote
by Ep, such that the real part of the denominator of Eq. (2.1), at T = 0, is vanishing

Ep = εk=0 +ReΣ(ω = Ep). (2.2)

On the other hand, to find the renormalized mass m∗, we first introduce the renormalized energy E(k)
by generalizing Eq. (2.2) for arbitrary k, and impose that it should be quadratic for small momenta

E(k) = εk +ReΣ(ω = E(k)) ≈ const.+
k2

2m∗ , around |k| ≈ 0. (2.3)

A practical way to calculate m∗ is to notice that around the bottom of the band ∇kE(k) ≈ k/m∗.
Hence, from Eq. (2.3) we deduce that around |k| ≈ 0 it holds that1

k

m∗ = ∇kE(k) = ∇kεk +∇kReΣ(ω = E(k)) ≈ k

m0

+
∂ReΣ(ω)

∂ω

∣∣∣∣∣
ω=Ep

∇kEk, (2.4)

where we introduced the band mass m0 analogous to m∗ in Eq. (2.3), when the renormalized energy
is substituted with the nonrenormalized dispersion E(k) → εk. Going back to Eq. (2.4), we see that
m∗ can be expressed in terms of the self-energy as follows

m∗ = m0

1− ∂ReΣ(ω)

ω

∣∣∣∣∣
ω=Ep

 . (2.5)

1We use that E(k = 0) = Ep.
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Figure 2.1: a) Comparison of the DMFT and DMRG (taken from Refs. [40, 43]) renormalized electron
mass in the 1D system, at T = 0. (b) Comparison of the ground state energy from the DMFT and the
global-local variational approach (taken from Ref. [43]) in the 1D system, at T = 0.

In the case of a tight-binding model on a hypercubic lattice in d dimensions, the band mass m0 can be
calculated using

εk = −2t0

d∑
i=1

cos ki ≈ −2t0

d∑
i=1

(1− k2i
2
) = const.+ t0

∑
i

k2i = const.+ t0k
2. (2.6)

From here, it directly follows that m0 = 1/(2t0), and this remains true irrespective of the number of
dimensions.

Let us now examine some numerical results. We apply the DMFT algorithm from Fig. 1.2 to
calculate the self-energy, and then use Eqs. (2.5) and (2.2) to calculate the quasiparticle properties.
In Fig. 2.1(a) we show the DMFT results in 1D for the electron effective mass over a broad range
of parameters, covering practically the whole parameter space in the (γ, λ) plane. We see that the
mass renormalization is in striking agreement with the DMRG result [40, 43] which presents the best
available result from the literature. Small discrepancies are visible only for stronger interaction with
small ω0. A similar level of agreement can be seen in the comparison of the ground state (polaron)
energy Ep in Fig. 2.1(b). Here, the results obtained with variational global-local method [43, 44]
are taken as a reference. While the agreement in the weak coupling and in the atomic limit could
be anticipated since the DMFT becomes exact in these limits, we find the quantitative agreement
in the crossover regime between these two limits rather surprising, bearing in mind that the DMFT
completely neglects nonlocal correlations.

We have also calculated the effective mass for two- and three-dimensional lattices (see Fig. 2.2(a)).
We observe an excellent agreement with the continuous-time path-integral quantum Monte Carlo
(QMC) calculation from Ref. [42], which has the reported numerical accuracy of 0.1%− 0.3%. This
was now expected since the importance of nonlocal correlations decreases in higher dimensions.

It is interesting to note that none of this was not observed earlier. In the standard reference of
Ciuchi et al. [56], the DMFT is applied only to the Bethe lattice, and this result was often used in
comparison with other reliable results obtained on finite-dimensional lattices. Used in this way, it
seems that the DMFT provides only a qualitative description of the Holstein model [23, 39, 43, 61, 71].
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Figure 2.2: (a) Continuous-time QMC (taken from Ref. [42]) vs. DMFT mass renormalization in 1D,
2D and 3D, with ω0 = 1. (b) Comparison of the DMFT mass renormalization on different lattices.
Here, the half-bandwidth W/2 is set to unity.

We illustrate this in Fig. 2.2(b), where we compare the renormalized mass results on a Bethe lattice,
with the results obtained on 1D, 2D, and 3D lattices.

Remark 7. The difference between the DMFT algorithm on different lattices lies in the self-consistency
condition. In the 1D and 2D cases, these conditions are given by Eqs. (1.108) and (1.114), respectively.
In the 3D case, we do not have a nice analytic solution, but Eq. (1.123) nevertheless gives a nice and
stable result. A self-consistency condition for the Bethe lattice reads as

G0(ω) =

(
ω − (W/2)2

4
G(ω)

)−1

, (2.7)

where W/2 is the half bandwidth.

It is rather surprising that there is a striking agreement between the effective mass for 2D and the
Bethe lattice as shown in Fig. 2.2(b), even though the noninteracting densities of states are different.
To make this analysis even more complete, we also provide comparisons between the 1D and 2D
spectral functions with the spectral functions on a Bethe lattice; see Fig. 2.3. The Bethe lattice lacks
a dispersion relation since it has no translational symmetry. Therefore in Fig. 2.3 we compare only
the local spectral functions A(ω) = − 1

π
ImG(ω) = − 1

π
Im 1

N

∑
kGk(ω) of the Bethe, and finite-

dimensional lattices. For small couplings, the spectral functions resemble the noninteracting density
of state and we find a large discrepancy, as shown in panels (a) and (b). However, as the interaction
increases the spectral functions become more alike. The agreement between 2D and Bethe results is
very good, even for moderate interactions. Although these findings are completely unexpected, we
will not delve further into their analysis, as our main focus is establishing the quality of DMFT method
for the prediction of single-particle properties within the Holstein model.
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Figure 2.3: Comparison of DMFT local spectral functions on different lattices

2.2 Spectral Functions for Weak Electron-phonon Coupling
In the previous section, we demonstrated that the DMFT gives extremely accurate predictions of the
quasiparticle properties. In doing so, we used a variety of different benchmarks from the literature.
Since we now want to investigate the accuracy of DMFT spectral functions in the weak coupling
limit, some benchmark methods are also needed here as well. One such promising candidate is the
self-consistent Migdal approximation (SCMA).

2.2.1 Benchmark Method: Self-Consistent Migdal Approximation
In Sec. 2.2 of Part I, we introduced the one-shot Migdal approximation. It is a perturbative method
that takes into account only the lowest-order Feynman diagram in the self-energy; see Eq. (2.17) of
Part I. As such, it is accurate only for very small couplings g, and thus it is not a reliable benchmark
for assessing the quality of the DMFT results in a somewhat broader range of parameter regimes.
Luckily, a significant improvement can be easily constructed by generalizing the Migdal approximation,
such that the noninteracting fermion propagator in Eq. (2.17) from Part I is substituted with the full
(interacting) propagator; see the top row of Fig. 2.4. This equation needs to be supplemented by the
Dyson equation, which relates the full Green’s function back to the self-energy ΣSCMA. Hence, these
equations need to be solved self-consistently. This constitutes the SCMA method. We note that some
further insight about this method can be gained if we expand the full Green’s function in terms of the
noninteracting Green’s function: as shown in the bottom row of Fig. 2.4, in addition to the Migdal
diagram in panel 2.4(b), SCMA consists of a series of non-crossing diagrams; see panels 2.4(c)–(e).
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Figure 2.4: Feynman diagrams for the self-consistent Migdal approximation.

However, despite the fact that this series is infinite, it fails to reproduce even some low-order diagrams;
see Fig. 2.5. This is one of the shortcomings of this method.

Figure 2.5: The lowest Feynman diagram missing in the SCMA.

Let us now derive the SCMA equations that are needed for the application of this method in
practice. This derivation will be performed in the grand canonical ensemble. We will concentrate on
the calculation of the self-energy since all single-particle properties are easily obtained from it. Using
the Feynman rules (see Sec. 2.1.1 of Part I), we see that the self-energy from Fig 2.4(a) can be written
as:

Σk(iωn) = − g2

βN

∑
q,νn

Gk−q(iωn − iνn)
2ω0

(iνn)2 − ω2
0

, (2.8)

where Gk(iωn − iνn) is the full electron propagator. The frequency dependence of this quantity can
be expressed explicitly using the spectral representation

Gk(iωn − iνn) =

∫
dξ

Ak(ξ)

(iωn − iνn − ξ)
, (2.9)

where Ak is the spectral function. Plugging this back into Eq. (2.8), we can perform the sum over
Matsubara frequencies νn using a well-known trick

1

β

∑
νn

F (iνn) = −
∫
C

dz

2πi
F (z)b(z), (2.10)

where b(z) = 1/(eβz − 1) is the Bose function and C is a counterclockwise contour around the poles
and branch cuts of F (z). Integral over z is easy to solve using the residue theorem, giving

Σk(iωn) =
g2

N

∑
q

∫
dξAk−q(ξ)

[
b(ω0)− b(iωn − ξ)

iωn − ω0 − ξ
− b(−ω0)− b(iωn − ξ)

iωn + ω0 − ξ

]
. (2.11)

This expression can be further simplified, using the properties of the Bose function b(iωn − ξ) =
−f(−ξ) and b(−ω0) = −1− b(ω0), where we introduced the Fermi function as f(z) = 1/(eβz + 1).
Furthermore, one should notice that the subintegral function in Eq. (2.11) is actually vanishingly small,
unless ξ is extremely large. This is a consequence of the fact that the spectral function Ak(ξ) vanishes
when we are very far away from ξ = ξ(k) = ε(k) − µ̃, and in our case µ̃ → −∞. Hence, we can
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restrict the integration in Eq. (2.11) to a domain of very large ξ. In that case we can approximate
f(ξ) ≈ 0 and f(−ξ) ≈ 1. Combining all of these insights, we obtain

Σk(iωn) =
g2

N

∑
q

∫
dξAk−q(ξ)

[
nph + 1

iωn − ω0 − ξ
+

nph

iωn + ω0 − ξ

]
, (2.12)

where we introduced nph = b(ω0). Once again, using the spectral representation from Eq. (2.9), the
above expression can be written as

Σk(iωn) =
g2(1 + nph)

N

∑
q

Gk−q(iωn − ω0) +
g2nph

N

∑
q

Gk−q(iωn + ω0). (2.13)

The right-hand side can be cast into an even simpler form if we use the fact that the local Green’s func-
tion G(ω) can be written as G(ω) = 1

N

∑
qGk−q(ω). Furthermore, since this quantity is momentum-

independent, we conclude that SCMA self-energy is also k-independent. Therefore, after performing
the Wick rotation iωn → ω + i0+ we finally obtain

Σ(ω) = g2(1 + nph)G(ω − ω0) + g2nphG(ω + ω0). (2.14)

The local Green’s function on the right-hand is actually the same quantity that we already examined in
Secs. 1.8.2, 1.8.3, and 1.8.4. Hence, depending on the lattice we are examining, Eqs. (1.108),(1.114),
or (1.123), represent another relation between the Green’s function and the self-energy. Each of these,
in conjunction with Eq. (2.14), constitute a set of equations that are solved self-consistently. In prac-
tice, we start from the self-energy in the Migdal approximation and, depending on the lattice, use
Eqs. (1.108),(1.114), or (1.123) to calculate the local Green’s function. Then, Eq. (2.14) can be used
to obtain the self-energy in the next interaction. This procedure is repeated over and over again, until
the self-energy has converged.

2.2.2 DMFT vs. SCMA in the Weak Coupling Limit
A comparison of the DMFT and SCMA spectral functions, for weak electron-phonon coupling, is
shown in Fig. 2.6. We note that no artificial broadening was used in any of the plots. As we see, the
results almost fully coincide. This proves that DMFT is in fact reliable in the weak-coupling regime.

2.3 Spectral Sum Rules

2.3.1 Introduction
In the Sec. 2.4 of Part I, we defined the spectral sume rules in Eq. (2.39). Here, we will be examining
the first few sum rules within the DMFT and SCMA. This analysis is relevant when the parameters
g, T are not too large. This is because the spectral functions, in this case, have a simple one or two
peak structure, as we already saw in Fig. 2.6. Hence, our goal is to support and somewhat extend the
conclusions of the previous chapter.

In the previous sections, we always had a benchmark method that assessed the quality of our results.
Since the spectral sum rules in the Holstein model can be calculated exactly [57], we will use these as
our benchmark.
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Figure 2.6: DMFT vs. SCMA spectral functions in the weak coupling regime.
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2.3.2 Spectral Sum Rules: Exact Results
The spectral sum rules can be obtained using the expression we obtained in Eq. (2.42) of Part I. The
results for 0 ≤ n ≤ 8 read as

M0(k) = 1, (2.15a)
M1(k) = εk, (2.15b)
M2(k) = (2nph + 1)g2 + ε2k, (2.15c)
M3(k) = 2(2nph + 1)g2εk + g2ω0 + ε3k, (2.15d)

M4(k) = 3g4(2nph + 1)2 + g2(2nph + 1)
(
3ε2k + 2t20 + ω2

0

)
+ 2g2ω0εk + ε4k, (2.15e)

M5(k) = 7g4(2nph + 1)2εk + g2
(
3ω0ε

2
k + 6t20ω0 + ω3

0

)
+ (2nph + 1)

(
10g4ω0 + g2

(
4t20εk + 2ω2

0εk + 4ε3k
))

+ ε5k, (2.15f)

M6(k) = ε6k + 15g6(2nph + 1)3 + g4(2nph + 1)2
(
12ε2k + 18t20 + 15ω2

0

)
+ 10g4ω2

0 + g2
(
12t20ω0εk + 4ω0ε

3
k + 2ω3

0εk
)

+ (2nph + 1)
(
22g4ω0εk + g2

(
6t20ε

2
k + 3ω2

0ε
2
k + 5ε4k + 12t20ω

2
0 + 6t40 + ω4

0

))
, (2.15g)

M7(k) = 36g6(2nph + 1)3εk + 21g4ω2
0εk

+ g2
(
18t20ω0ε

2
k + 3ω3

0ε
2
k + 5ω0ε

4
k + 20t20ω

3
0 + 30t40ω0 + ω5

0

)
+ (2nph + 1)2

(
105g6ω0 + g4

(
41t20εk + 32ω2

0εk + 18ε3k
))

+ (2nph + 1)g4
(
36ω0ε

2
k + 108t20ω0 + 56ω3

0

)
+ (2nph + 1)g2

(
2εk

(
12t20ω

2
0 + 6t40 + ω4

0

)
+ 8t20ε

3
k + 4ω2

0ε
3
k + 6ε5k

)
+ ε7k, (2.15h)

M8(k) = 105g8(2nph + 1)4 + g6(2nph + 1)3
(
64ε2k + 160t20 + 210ω2

0

)
+ g4

(
33ω2

0ε
2
k + 158t20ω

2
0 + 56ω4

0

)
+ g2

(
24t20ω0ε

3
k + 40t20ω

3
0εk + 60t40ω0εk + 6ω0ε

5
k + 4ω3

0ε
3
k + 2ω5

0εk
)

+ (2nph + 1)2
(
236g6ω0εk + g4

(
68t20ε

2
k + 51ω2

0ε
2
k + 25ε4k + 258t20ω

2
0 + 94t40 + 63ω4

0

))
+ 280(2nph + 1)g6ω2

0 + (2nph + 1)g4
(
240t20ω0εk + 52ω0ε

3
k + 116ω3

0εk
)

+ 3(2nph + 1)g2ε2k
(
12t20ω

2
0 + 6t40 + ω4

0

)
+ (2nph + 1)g2

(
10t20ε

4
k + 5ω2

0ε
4
k + 7ε6k + 90t40ω

2
0 + 30t20ω

4
0 + 20t60 + ω6

0

)
+ ε8k. (2.15i)

We note that the results for 0 ≤ n ≤ 4 originally appeared in Ref. [57], n = 5 result was calculated in
Ref. [62], while the results for n = 6, 7, 8 are presented here for the first time.

2.3.3 Spectral Sum Rules: SCMA Predictions
Berciu and collaborators [53, 72] introduced a nice method for determining how many sum rules a
method we are examining satisfies, if we know its diagrammatic expansion (see Fig. 2.4) and the
lowest order diagram that is missing from that expansion (see Fig. 2.5). We now briefly review that
method, in the case of SCMA. Let

M̃n(k) ≡
∫
dω ωn Gk(ω). (2.16)

Now, the spectral sum rules can be written as

Mn(k) =

∫
dω ωn Ak(ω) = − 1

π
ImM̃n(k). (2.17)

We note that the real part of the M̃n can even be infinite or undefined, since it is only the imaginary
part that we are interested in. The Green’s functon from Eq. (2.16) can now be rewritten in terms of
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the self-energy, using the Dyson equation 2

Gk(ω) =
1

G−1
0 (ω)− Σk(ω)

= G0(ω)
[
1 +G0(ω)Σk(ω) + (G0(ω)Σk(ω))

2 + . . .
]
, (2.18)

while the self-energy itself can be expanded in the series with respect to the electron-phonon coupling
strength g

Σk(ω) = g2Σ(2)(ω) + g4Σ(4)(ω) + . . . (2.19)

where Σ(n)(ω) denotes the SCMA self-energy terms which have exactly n vertecies. Plugging all of
this back into (2.16), we get:

M̃n =

∫
dω ωn G0(ω)︸ ︷︷ ︸

I

+ g2
∫
dω ωn G0(ω)

2Σ(2)(ω)︸ ︷︷ ︸
II

+ g4
∫
dω ωn G0(ω)

2Σ(4)(ω)︸ ︷︷ ︸
III

+ g4
∫
dω ωn G0(ω)

3(Σ(2)(ω))2︸ ︷︷ ︸
IV

+ . . . (2.20)

Let us now see how much does each of these terms contribute to the spectral sum rules. Before we
do that, we first need to notice that each of these terms has an integrand which is completely analytic
in the upper-half complex ω plane. Hence, if the integrand is decaying faster than 1

ω
, for ω → ±∞,

we can close the complex contour from the upper half side3. Since there are no complex poles in the
upper-half plane, the integral is vanishing. Hence, we conclude that if the integrand is decaying faster
than 1

ω
for ω → ±∞, the corresponding term does not contribute to the spectral sum rule. Our task is

thus reduced to finding the asymptotic expansion for each of the subintegral functions in Eq. (2.20).
In order to do this, we first note that G0(ω) ∝ 1

ω
, for ω → ±∞. Hence, the integrand in I behaves

as ∝ ωn−1, and this term contributes to spectral sum rules for arbitrary n. Before we analyze the
second term, we first note that g2Σ(2)(ω) corresponds to the diagram shown in Fig. 2.4(b). This term
has a single electron propagator, and hence contributes as Σ(2)(ω) ∝ 1

ω
, for ω → ±∞. The whole

subintegral term II thus behaves as ∝ ωn−3. We conclude that II contributes only for n ≥ 2. Similarly,
we see that Σ(4)(ω) ∝ 1

ω3 , and hence both subintegral terms in III and IV behave as ωn−5. These
terms contribute for n ≥ 4. However, SCMA does not faithfully reporoduce all diagrams of fourth
order. The one in Fig. 2.5 is missing. Hence, SCMA correctly predicts the spectral sum rules for
n = 0, 1, 2, 3.

2.3.4 Spectral Sum Rules: DMFT Predictions
Within the DMFT, the spectral sum rules are calculated numerically. Results, over a large number of
parameter regimes, are presented in Tables F.1–F.17, in Appendix F. We see a striking agreement with
the exact results for all the sum rules that we calculated (0 ≤ n ≤ 8). This confirms our earlier findings
that the DMFT is in fact reliable in the weak coupling limit.

2.4 Atomic Limit
The atomic limit is defined as a parameter regime where the hopping is vanishing t0 = 0. In this case,
the Holstein problem admits an exact analytic solution; see Sec. 2.3 in Part I. In fact, the DMFT should

2This is justified as we know that the spetral sum rules have the same, polynomial expression, irrespective of the
coupling strength. Hence, if we derive the spectral sum rules for weak coupling, where this expansion is valid, we know
that the sum rules continue to be valid eve for other regimes.

3We could also close the contour from the lower-half side as well, but the upper half-side turns out to be much more
convenient. This is allowed since the length of the contour grows linearly 2πR and there is no exponential term
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also predict the exact solution. This can be seen as follows: in Chapter 1, we gave a detailed derivation
of the DMFT equations and proved that they predict an exact result in the limit of infinite coordination
number Z → ∞. However, in the atomic limit, the sites are decoupled. This means that the result is
independent of Z, enabling us to formally take the limit Z → ∞. Since DMFT is exact in the Z → ∞
limit, it follows that it also has to be exact in the atomic limit as well.

Here, we supplement this analysis by numerically investigating the DMFT solution close to the
atomic limit. In addition, we will be discussing the predictions of the SCMA at the atomic limit.

2.4.1 Atomic Limit at T = 0: DMFT Predictions
In the T = 0 case, the exact Green’s function in the atomic limit was already presented in Part I; see
Eq. (2.38a). The corresponding spectral function is given by a series of delta peaks

A(ω) =
∞∑
n=0

α2ne−α
2

n!
δ (ω − nω0 − Ep) , (2.21)

where Ep is given by Eq. (2.37). We now want to compare this with the DMFT predictions close to
the atomic limit (t0 = 0.05 and t = 10−5), in the regime ω0 = g = 1. Since Eq. (2.21) is given
by a sum of Dirac delta functions, plotting this would require introducing some kind of artificial
broadening. Instead, the comparison between DMFT and the exact result can be made using the
momentum-averaged integrated spectral weights

I(ω) =
1

N

∑
k

Ik(ω), (2.22a)

Ik(ω) =

∫ ω

−∞
Ak(ν)dν. (2.22b)

The exact result for this quantity is a direct consequence of Eq. (2.21), and is given by

Iexact(ω) =
∞∑
n=0

α2ne−α
2

n!
θ (ω − nω0 − Ep) , (2.23)

where θ is the Heaviside step function. However, calculating I(ω) within DMFT is not completely
straightforward. This is because DMFT, at T = 0 predicts that the polaron peak is a true Dirac delta
function. In addition, there can be additional delta peaks in the DMFT solution. These delta peaks,
without the use of artificial broadening, cannot be represented on a finite frequency grid, which is
how Ak(ν) is stored on a computer. Hence, the information about the delta peaks will be missing if,
in our numerical implementation, we simply calculate the spectral function as4 Ak = − 1

π
ImGk(ω).

Therefore, a straightforward numerical integration of Eq. (2.22b) would sometimes seemingly lead to
the conclusion that the spectral sum rule Ik(∞) = 1 is violated. This problem needs to be solved if
we want to reliably calculate the expressions in Eq. (2.22).

Let us now present a numerical scheme that overcomes these issues. This is achieved by calculating
Ik(ω) directly from the self-energy5 Σ(ω). Let us suppose that the self-energy data {Σ0,Σ1...ΣN−1}
are known on a dense grid {ω0, ω1...ωN−1}, such that ∆ωq = ωq+1−ωq is small enough. The integrated
spectral weight can then be rewritten as

Ik(ωl) = − 1

π
Im

∫ ωl

−∞

dν

ν − Σ(ν)− εk
≈ − 1

π
Im

l−1∑
q=0

∫ ωq+1

ωq

dν

ν − Σ(ν)− εk
. (2.24)

4Of course, if we could perform the calculation analytically, delta peaks would be present.
5The self-energy keeps the information about the location of the delta peaks; see the text below Eq. (2.24).
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At each interval [ωq, ωq+1] the self-energy is known only at the endpoints. The linear interpolation of the
subintegral function at each interval [ωq, ωq+1] would correspond to trapezoid integration, which cannot
take into account the already mentioned delta peaks. The delta peaks occur whenever our subintegral
function is (infinitely) close to the singularity, i.e. when ImΣ(ν) → 0− and ν − ReΣ(ν)− εk ≈ 0.
Hence, these will be accounted for if we use the linear interpolation of the denominator itself instead
of the whole subintegral function.

Ik(ωl) ≈ − 1

π
Im

l−1∑
q=0

∫ ωq+1

ωq

dν

ν − εk −
[
Σq + Σ′

q(ν − ωq)
] , (2.25)

where Σ′
q = (Σq+1 − Σq)/(ωq+1 − ωq). This can now be evaluated analytically6

Ik(ωl) = − 1

π
Im

l−1∑
q=0

1

1− Σ′
q

ln

[
ωq+1 − εk − Σq+1

ωq − εk − Σq

]
. (2.26)

Equation (2.26) is the solution to our problem, as it, by construction, correctly takes into account both
the contribution of the Dirac delta peaks and the contribution of the rest of the spectral function.

Remark 8. It is easy to see that the contribution of the term, which corresponds to the interval
(ωq, ωq+1), to Eq. (2.26) is equal to

1

1− Σq+1−Σq

ωq+1−ωq

≈ 1

1− ∂ωΣ
, (2.27)

if the interval contains a delta peak, whereas it is

− 1

π
Im

[
1

1− Σ′
q

ln

(
1 + ∆ωq

1− Σ′
q

ωq − ε− Σq

)]
≈ −∆ωq

1

π
Im

[
1

ωq − εk − Σq

]
(2.28)

otherwise. If we analytically took into account the contribution of the delta peak, it would coincide
with Eq. (2.27), while Eq. (2.28) is exactly the term we would get using the standard Riemann sum
in Eq. (2.22b). Having in mind that the Riemann sum approach is completely justified in the absence
of delta peaks, we now explicitly see that the integration scheme presented in Eq. (2.26) is perfectly
well-suited for the calculation of the integrated spectral weight.

Using the numerical scheme we just presented (see Eq. (2.26)), we can finally calculate the inte-
grated spectral weight within the DMFT, and compare it to the exact analytical result from Eq. (2.23).
The results are shown in Fig. 2.7, where we observe a remarkable agreement. We see that I(ω) features
jumps at frequencies where A(ω) has peaks and the height of those jumps is equal to the weight of
the peaks. Nonzero hopping in the DMFT solution introduces small momentum dependence of Ik(ω),
which is why Fig. 2.7 shows the result averaged over all momenta. A more detailed comparison is
presented in Table 2.1. It shows the numerical values of the DMFT I(ω) at the positions of delta
peaks (for a given k and averaged over many k) in comparison with the analytical t0 = 0 result
from Eq. (2.23). These delta peaks, positioned at nω0 + Ep, have the weights equal to α2ne−α

2
/n! for

n = 0, 1 . . . . As expected, the DMFT is fully capable of reproducing the results at the atomic limit.

6For the calculation of this integral it is useful to exploit lnx− ln y = ln(x/y), which does not hold in general, but it
can be used in our case since ImΣq < 0 (for every q).
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Figure 2.7: DMFT integrated spectral weight for t0 = 0.05 (shaded) and t0 = 10−5 (red dashed line)
averaged over all momenta, I(ω) = 1

N

∑
k

∫ ω
−∞Ak(ν)dν, in comparison to the exact t0 = 0 result

(blue solid line).

Table 2.1: Integrated spectral weight I(ω) for different momenta and hopping parameters at T = 0
and ω0 = g = 1. The exact atomic limit corresponds to t0 = 0.00, and the corresponding results are
depicted as shaded cells. For t0 = 10−5 the DMFT solution has no k-dependence within the specified
accuracy, which is why the corresponding k-values are denoted as ’all’. We denote the k-values to be
’av.’ if the answer is averaged over all momenta.

k
t0

ω
-2 -1 0 1 2 3

0.00 0.00 0.37 0.74 0.92 0.98 1.0
all 10−5 0.00 0.37 0.74 0.92 0.98 1.0
av. 0.05 0.00 0.37 0.73 0.92 0.98 1.0
0 0.05 0.00 0.40 0.76 0.94 0.99 1.0
π/2 0.05 0.00 0.37 0.74 0.92 0.98 1.0
π 0.05 0.00 0.33 0.71 0.91 0.98 0.99

2.4.2 Atomic Limit at T ̸= 0: DMFT Predictions
Let us now consider the T ̸= 0 case. At the atomic limit, Eq. (2.38b) from Part I implies that the
spectral function is given by

A(ω) =
∞∑

n=−∞
In

(
2α2
√
nph(nph + 1)

)
e−(2nph+1)α2+n

ω0
2T δ (ω − nω0 − Ep) , (2.29)

while the corresponding integrated spectral weight reads as

I(ω) =
∞∑

n=−∞
In

(
2α2
√
nph(nph + 1)

)
e−(2nph+1)α2+n

ω0
2T θ (ω − nω0 − Ep) . (2.30)

The peaks are located at nω0 + Ep, where n can now be both positive and negative integer.
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Figure 2.8: DMFT spectral functions A(ω) = 1
N

∑
k Ak(ω) for ω0 = 1, g = 1, t0 = 0.05.

Table 2.2: Spectral weights of individual peaks located at ω = nω0 + Ep for n = −2,−1, 0, 1, 2, 3.
The DMFT spectra, obtained for t0 = 0.05, are averaged over k. The atomic limit values (t0 = 0.00)
are obtained from the analytical formula and are depicted as shaded cells. Here ω0 = 1, g = 1.

T
t0

ω
-2 -1 0 1 2 3

0.4 0.00 0.03 0.34 0.35 0.19 0.07 0.02
0.4 0.05 0.03 0.34 0.34 0.18 0.07 0.02
0.6 0.00 0.06 0.30 0.33 0.19 0.08 0.02
0.6 0.05 0.06 0.30 0.33 0.19 0.08 0.02
0.8 0.00 0.09 0.27 0.30 0.19 0.09 0.03
0.8 0.05 0.09 0.27 0.30 0.19 0.09 0.03
1.0 0.00 0.10 0.25 0.28 0.19 0.09 0.04
1.0 0.05 0.10 0.25 0.28 0.19 0.10 0.04
1.2 0.00 0.11 0.23 0.26 0.19 0.10 0.04
1.2 0.05 0.11 0.23 0.26 0.19 0.10 0.04
1.4 0.00 0.12 0.21 0.24 0.19 0.11 0.05
1.4 0.05 0.12 0.21 0.24 0.19 0.11 0.05

Let us now compare these exact results for various temperatures with the DMFT predictions, in
the parameter regime ω0 = g = 1. The DMFT spectra, averaged over k, are shown in Fig. 2.8. Even
though no artificial broadening was used, these peaks have nonzero width, as a consequence of the
nonzero hoping parameter (t0 = 0.05). We note that the peaks themselves, at low temperature, do not
have the Lorentzian shape. Instead, they are characteristically fork-shaped, which is the consequence
of the 1D density of states (see Fig. 2.3i(a)). This property is only noticeable at small temperatures
because the larger temperatures tend to smear it out. The weight of the peaks are very close to the
analytical result In(2α2

√
nph(nph + 1))e−(2nph+1)α2+n

ω0
2T , as seen from Table 2.2. This confirms the

ability of the DMFT to correctly reproduce the results at the atomic limit.
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2.4.3 Atomic Limit at T = 0: SCMA Predictions
Here, we present a formal proof that SCMA does not predict correct results at the atomic limit. We
restrict our derivation to the T = 0 case. In the atomic limit (t0 = 0) at T = 0, it holds that nph → 0.
Hence, the SCMA Eq. (2.14) reduces to

Σ(ω) = g2G(ω − ω0). (2.31)

In addition, since the SCMA self-energy is k-indepedent, and the noninteracting dispersion vanishes
in the atomic limit εl = −2t0 cos k → 0, we see that in this limit the Green’s function also loses its k
dependence. Hence, the local Green’s function from Eq. (2.31) can be written as

G(ω) =
1

ω − Σ(ω)
. (2.32)

Combining Eqs. (2.31) and (2.32), we obtain

Σ(ω) = g2G(ω − ω0) =
g2

ω − ω0 − Σ(ω − ω0)
=

g2

ω − ω0 − g2

ω−2ω0−Σ(ω−2ω0)

= · · · = g2

ω − ω0 − g2

ω−2ω0− g2

ω−3ω0−
g2

...

. (2.33)

However, this does not coincide with the exact solution which is given by Eq. (1.155), where we should
substitute G(ω) → ω−1, as explained in Remark 6. Therefore, SCMA cannot be exact in the atomic
limit. Some numerical results of the SCMA in this limit will be given in the next section, and also in
Sec. 3.4.4.

2.5 Spectral Function at Intermediate and Strong Electron-Phonon
Coupling

2.5.1 Benchmark Method: Hierarchical Equations of Motion
The hierarchical equations of motion (HEOM) method is a numerically exact technique that has
recently gained popularity in the chemical physics community [73–76]. It has been used to explore
the dynamics of an electron (or exciton) which is linearly coupled to a Gaussian bosonic bath. One of
the advantages of this method is that the correlation functions are calculated directly on the real-time
(real-frequency) axis [77], avoiding the numerically ill-defined analytical continuation. However, the
existence of numerical instabilities stemming from the discreteness of phonon bath on a finite lattice,
explain why its application for the study of the Holstein model [78–82] were not more widespread
in the past. Recently, these limitations were overcome using the momentum-space HEOM method,
which was developed by Janković in Ref. [83]. He was the one who generated all the HEOM results,
that we will be using as a benchmark, in this thesis.

Let us now give a brief overview of this method. Within HEOM, the central quantity that is calcu-
lated is the time-dependent greater Green’s function, which is defined as G>(k, t) = −i⟨ck(t)c†k⟩T,0. It
turns out that we can represent it as a rootG>(k, t) = G>,0

0 (k, t) of an infinite hierarchy of the so-called
auxiliary Green’s functions (AGFs)G(>,n)

n (k−kn, t). Here,n ≥ 0 is the number of the electron-phonon
interaction events starting from the free-electron state of momentum k, while n is a vector of nonneg-
ative integers that fully describes each event (the phonon momentum and whether it is absorbed or
emitted). The net momentum exchange between the electron and the phonons after n events is denoted
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by kn. The AGFs are mutually dependent: the equation of motion for the AGFs at depth n includes
also the terms with AGFs at depths n ± 1, with factors that are proportional to the electron-phonon
coupling constant and to the phonon absorption/emission factors 1

2
[coth(ω0/(2T ))±1]. As a result, an

infinite hierarchy of the equations for the AGFs is constructed. In practice, the hierarchy is truncated
at a certain maximum depth D, so that all AGFs with n > D are set to zero, after which the obtained
set of differential equations is solved numerically.

Since the exact solution would theoretically correspond to D → ∞, it is always necessary to check
that the chosen D (which for numerical reasons has to be finite) was large enough so that the results
have fully converged. In addition, HEOM method can only be applied to a system with a finite number
of lattice sites N . Thus, if we want to describe the system in a thermodynamic limit (i.e., N → ∞),
we also need to keep increasing N until the convergence of the results, with respect to this parameter,
is reached as well. However, we note that in practice N and D cannot be too large, due to computer
memory issues. In addition, HEOM is computationally expensive. This is the price one has to pay for
the results of such high quality that this method produces. The concrete values of N and D which one
needs to take vary depending on the regime. For example, there is not much electron-phonon scattering
in the weak coupling limit, which is why this regime requires largeN and smallD. In contrast, smaller
N would be sufficient in the strong coupling limit, but the depth D should be much larger. In the case
of intermediate electron-phonon coupling, which is the most relevant for us, Ref. [83] showed that
even relatively small N (between 5 and 10) are representative of the thermodynamic limit.

2.5.2 Results at Finite Temperature
Typical results for the k = 0 and k = π spectral functions are shown in Fig. 2.9, while additional
results for other momenta and other parameters are shown in Figs. 2.10 and 2.11. We note that the
convergence of the HEOM results with respect to N and D was always checked. Table 2.3 displays
the values of these parameters, that are deemed sufficiently large for the results to be considered
converged.

The agreement between DMFT and HEOM spectral functions is excellent for ω0 = g = 1; see pan-
els Fig. 2.9(a)– 2.9(b), where we note that the DMFT solution is a bit smoother than HEOM, due to the
finite-size effects of the HEOM solution. Moreover, in this regime, even the SCMA method provides
decent results: the weight of the SCMA quasiparticle (QP) peak is nearly equal to the DMFT/HEOM
QP weight, and the overall agreement of spectral functions is rather good. This is not the case for
stronger electron-phonon coupling (see panels 2.9(c)– 2.9(h)) where the SCMA poorly approximates
the true spectrum. In particular, we now see the numerical predictions of the SCMA near the atomic
limit7 (see panels 2.9(g)– 2.9(h)), complementing the results of Sec. 2.4.3. As expected, it gives
completely incorrect predictions, in contrast to the DMFT which provides very reliable results.

However, the regime for g =
√
2 seems to pose some problems to the DMFT. We observe that for

g =
√
2 and k = π (see panel 2.9(d)) the DMFT and HEOM satellite peaks are somewhat shifted with

respect to one another. This is the most challenging regime for the DMFT, representing a crossover
(λ = 1) between the small and large polaron. Nevertheless, the agreement remains very good near
the quasiparticle peak for k = 0 (see panel 2.9(c)), which will be the most important for transport in
weakly doped systems.

Up to now, we have analyzed the DMFT solution for weak couplings (in Sec. 2.2), for intermediate
couplings (in Figs. 2.9(a)–2.9(d)), and near the atomic limit (in Figs. 2.9(g)–2.9(h) and Sec. 2.4). To
complete this analysis, let us now turn to the results at the strong coupling regime. The case when
g = 2 should be a good representative of this regime. This can be concluded from Fig. 2.1, which
shows that in this case, there is a strong renormalization of electron mass m∗/m0 ≈ 10. Unfortunately,
the HEOM benchmark cannot easily converge in this regime with respect to maximum depth D, due
to computer memory issues. In order to find an adequate benchmark, capable of providing reliable
results for this regime, we first analyze the DMFT results, applied on a finite system with N sites (see

7Since we measure ω0 and g in term of t0, the atomic limit corresponds to the regime of large ω0 and g.
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Chapter 1 and Remark 4 therein). The results are shown in Fig. 2.12. In the regime g = 2, ω0 = 1, we
see that there is very little difference between the results for N = 4, N = 6, and the thermodynamic
limit. Therefore, in this case, a lattice as small as N = 4 can be considered sufficiently large to be
representative of the thermodynamic limit. This insight opens a pathway for the introduction of the
exact diagonalization (ED) method as a benchmark in this regime. In the case of a lattice with N > 4,
the application of the ED method would require too much computer memory. Luckily, as we have now
demonstrated, N = 4 is sufficient in this case. We note that all the ED results were implemented by
Nenad Vukmirović [62], and we just use them as a benchmark.

Remark 9. Within the ED method, the spectral functions are calculated by diagonalizing the Holstein
Hamiltonian in the space spanned by the vectors Uc†i |n1n2 . . . nN⟩, where ni is the number of phonons
at site i ∈ 1, . . . , N , satisfying

∑
i ni < nmax, while U is the unitary operator of the Lang-Firsov

transformation [38] given as
U = e

g
ω0

∑
i c

†
i ci(ai−a

†
i ). (2.34)

Both N and nmax need to be increased until convergence is reached. The spectral function is then
calculated as8

Ak(ω) =
1

Zp

∑
mp

e−βEmp

∑
me

δ(ω + Emp − Eme)|⟨mp|ck |me⟩|2, (2.35)

where |mp⟩ denotes purely phononic states, the energy of which is Emp , |me⟩ denotes the states with
one electron and arbitrary number of phonons, the energy of which is Eme and Zp =

∑
p e

−βEmp is
the phononic partition function. It turns out that the convergent results, for the spectral function when
g = 2, ω0 = 1, N = 4, are obtained for nmax = 16.

The results are shown in Figs. 2.9(e)– 2.9(f). We see a remarkable agreement between DMFT and
ED, even though this regime is far away from both the atomic and weak coupling limits, where the
DMFT is exact. The spectral functions in Figs. 2.10 and 2.11 can be analyzed analogously. Overall,
we conclude that the agreement of DMFT and HEOM/ED spectra is very good, which implies that the
nonlocal correlations are not pronounced.

Remark 10. We note that the HEOM and ED methods impose periodic boundary conditions on a finite
lattice. Hence, the momenta k can only take the values that are integer multiples of 2π/N . Although
additional values of k are obtained using the twisted boundary conditions, arbitrary values of k are
not available. This is why different panels in Figs. 2.10 and 2.11ii do not always have the same values
of momenta. Nevertheless, this is sufficient for our comparisons, since DMFT and SCMA are applied
in the thermodynamic limit, meaning that we can easily calculate the results for arbitrary k.

Table 2.3: Number of lattice sites N and the maximum hierarchy depth D used for the application of
the HEOM method in different regimes at finite temperature

Parameters N D
ω0 = 1 g = 1 T = 0.7 10 6
ω0 = 1 g = 1 T = 1 10 6
ω0 = 1 g =

√
2 T = 0.4 8 8

ω0 = 1 g =
√
2 T = 0.6 8 7

ω0 = 1 g =
√
2 T = 0.8 8 7

ω0 = 3 g =
√
12 T = 1 6 9

8Plotting this result requires the introduction of some artificial broadening, due to the delta functions.
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Figure 2.9: DMFT, HEOM, SCMA, and ED finite temperature spectral functions for different parame-
ters. On the left panels k = 0, whereas k = π on the right. The integrated spectral weight is presented
in the insets without broadening. Lorentzian broadening (with a halfwidth η = 0.05) is only used
for plotting the ED spectral functions in panels (e) and (f) and for plotting all spectral functions in
panels (g) and (h).
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Figure 2.10: DMFT, HEOM, SCMA, and ED spectral functions for different parameters. On the left
panels π/4 ≤ k ≤ π/3, whereas π/2 ≤ k ≤ 3π/4 on the right. The integrated spectral weight is
presented in the insets without broadening. Lorentzian broadening (with a halfwidth η = 0.05) is only
used for plotting the ED spectral functions in panels (e) and (f) and for plotting all spectral functions
in panels (g) and (h).

71



4 2 0 20.0

0.4

0.8
A(

)
(a)

2 0 2 4 60.0

0.2

0.4

0.6(b)

6 4 2 0 2 40.0

0.4

0.8

A(
)

(c)

4 2 0 2 4 6 0.0

0.2

0.4
(d)

5 0 50.0

0.5

1.0

1.5

A(
)

(e)

5 0 5 0.0
0.1
0.2
0.3
0.4
0.5(f)

5 0 50.0

0.2

0.4

A(
)

(g)

5 0 5 100.0

0.1

0.2

0.3

(h)

DMFT
SCMA
HEOM
DMFT
HEOM
ED

4 2 0 20.0

0.5

1.0

I(
)

k = 0
2 0 2 4 6

0.0

0.5

1.0

k =

4 0 40.0

0.5

1.0

I(
)

k = 0
4 0 4

0.0

0.5

1.0

k =

5 0 50.0

0.5

1.0

I(
)

k = 0
5 0 5

0.0

0.5

1.0

k =

5 0 50.0

0.5

1.0

I(
)

k = 0
5 0 5 10

0.0

0.5

1.0

k =

0 = 1
 g = 1
 T = 1.0

0 = 1
 g = 2
 T = 0.8

0 = 1
 g = 2
 T = 0.6

0 = 1
 g = 2
 T = 0.7

(i) Results for k = 0 (left panels) and
k = π (right panels).

4 0 40.0

0.2

0.4

0.6

A(
)

(a)

4 0 4 0.0

0.2

0.4
(b)

4 0 40.0

0.2

0.4

0.6

A(
)

(c)

4 0 4 0.0

0.2

0.4
(d)

5 0 50.0

0.4

0.8

A(
)

(e)

5 0 5 0.0

0.2

0.4(f)

5 0 50.0
0.1
0.2
0.3
0.4
0.5

A(
)

(g)

5 0 5 0.0

0.1

0.2

0.3

0.4

(h)

DMFT
HEOM
SCMA
DMFT
HEOM
ED

4 0 40.0

0.5

1.0

I(
)

k = 8
25

4 0 4
0.0

0.5

1.0

k = 16
25

4 0 40.0

0.5

1.0

I(
)

k = 4
4 0 4

0.0

0.5

1.0

k = 3
4

5 0 50.0

0.5

1.0

I(
)

k = 4
5 0 5

0.0

0.5

1.0

k = 3
4

5 0 50.0

0.5

1.0

I(
)

k = 4
5 0 5

0.0

0.5

1.0

k = 3
4

0 = 1
 g = 1
 T = 1.0

0 = 1
 g = 2
 T = 0.8

0 = 1
 g = 2
 T = 0.6

0 = 1
 g = 2
 T = 0.7

(ii) Results for π/4 ≤ k ≤ π/3 (left panels) and
π/2 ≤ k ≤ 3π/4 (right panels).

Figure 2.11: DMFT, HEOM, SCMA, and ED spectral functions for different parameters. The inte-
grated spectral weight is presented in the insets without broadening. Lorentzian broadening (with a
halfwidth η = 0.05) is only used for plotting the ED spectral functions.
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Figure 2.12: DMFT results for systems with finite number of lattice sites.
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2.5.3 Heat Maps
In the previous section, we saw the DMFT spectral functions for different values of momenta. Another
common way to present those results is by using the heat maps in the k − ω plane. In Fig. 2.13i we
show the DMFT heat maps for the same parameters as in Figs. 2.9 - 2.11. For comparison purposes,
in Fig. 2.13ii we also show the DMFT heat maps for the same parameters as in the finite-T Lanczos
results from Fig. 2 of Ref. [46]. A small difference in DMFT vs. Lanczos method heat maps can be
ascribed to the more pronounced peaks in the DMFT spectra.
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Figure 2.13: DMFT heat maps for Ak(ω).
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2.5.4 Results at T = 0

The analysis from Sec. 2.5.2 can now also be repeated in the case of T = 0. The results, for the same
values of ω0 and g as in Figs 2.9– 2.11, are shown in Figs. 2.14– 2.17. As in Sec. 2.5.2, we note that
the HEOM results represent a benchmark in all regimes except for ω0 = 1, g = 2, where this method
requires too much computer memory to converge with respect to D. In this case, as a benchmark, we
use the ED method. In the g = 2 regime, it turns out that N = 4 sites is large enough to represent the
thermodynamic limit, as justified in Sec. 2.5.2. In all other regimes sufficiently large values of N and
D, such that the results of the HEOM benchmark have fully converged, have always been used, and
are presented in Table 2.4.

Typical results at k = 0 are illustrated in Fig. 2.14. The weights of the DMFT and HEOM quasi-
particle peaks correspond to the m0/m

∗ ratio. We note that at T = 0, the DMFT quasiparticle peak
is a delta function, while satellite peaks are incoherent having intrinsic nonzero width. Hence, for
illustration purposes, in the insets of Figs. 2.14– 2.17, the spectral functions are broadened, using
a Loretnzian broadening with half-width η = 0.05. On the other hand, the main panels show the
integrated spectral weights I(ω) without any broadening. These were calculated using the numerical
scheme we presented in Sec. 2.4.1; see Eq. (2.26). A sharp jumps can be observed in I(ω) at frequen-
cies where the Dirac delta peaks are situated in the spectral functions. In contrast to the DMFT results,
all HEOM peaks have a finite width due to the finite lattice size N and finite propagation time tmax.
Nevertheless, to make a fair comparison with DMFT, we also use Lorentzian η = 0.05 broadening in
HEOM spectral functions as well9. This Lorentzian broadening is generally much larger than the one
arising from finite N and tmax.

In panel 2.14(a), we see an excellent agreement between DMFT and HEOM quasiparticle peaks.
However, there seems to be a small discrepancy in the satellite structure: while HEOM predicts two
small peaks around ω ≈ −1.25 and ω ≈ −1.47, DMFT reproduces only a single broad structure. This
discrepancy is a consequence of the small finite-size effects of the HEOM solution. We illustrate this
in Fig. 2.18, where we apply the DMFT on a finite lattice with N = 10, which is the same size as the
one used in HEOM; see Table 2.4. This is another demonstration that DMFT is in fact quite accurate.

A favorable comparison between DMFT and HEOM/ED is also visible in other regimes as well; see
panels 2.14(b)– 2.14(c). In particular, in the strong coupling regime ω0 = 1, g = 2 ( see panel 2.14(b)),
the DMFT is even capable of capturing the so-called excited QP peak. This peak consists of a polaron
and a bound phonon, and is situated at the energy below Ep + ω0, where Ep is the ground state energy
[45, 46]. At a crossover regime between large and small polarons ω0 = 1, g =

√
2, the DMFT is giving

excellent results for k = 0, but as in the finite temperature case, its predictions are shifted with respect
to HEOM results for k = π; see Figs. 2.14(c) and 2.17(c). Lastly, for parameters in Fig. 2.14(d) the
lattice sites are nearly decoupled, approaching the atomic limit (t0 ≪ g, ω0). Having in mind the finite
temperature results from Sec. 2.5.2, and the fact that DMFT is exact in the atomic limit, its reliable
predictions are now completely expected in this regime.

9Once again, we emphasize that the broadening is introduced only for plotting figures. All calculations are performed
without any broadening.

Table 2.4: Number of lattice sites N and the maximum hierarchy depth D used for the application of
the HEOM method in different regimes at T = 0

Parameters N D
ω0 = 1 g = 1 10 6
ω0 = 1 g =

√
2 8 7

ω0 = 3 g =
√
12 6 9
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Figure 2.14: Integrated DMFT, HEOM, SCMA, and ED spectral weights, I(ω) =
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Figure 2.16: Integrated DMFT, HEOM, SCMA, and ED spectral weights, I(ω) =
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−∞ dνAk(ν), at

T = 0. The insets show comparisons of the spectral functions. I(ω) is obtained without broadening,
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Figure 2.18: Finite-size effects in the DMFT solution at intermediate coupling ω0 = 1, g = 1, T = 0.

Other figures in this section support the conclusion that DMFT is an excellent approximate method
in the whole parameter space. In contrast, we show that SCMA gives decent predictions only for
ω0 = 1, g = 1. As the interaction increases, the SCMA solution misses the position and the weight of
the quasiparticle peak, and the satellite peaks are not properly resolved.

Remark 11. As in Sec. 2.5.2, we note that the HEOM/ED method imposes the periodic boundary
conditions on a finite lattice. As a consequence, the HEOM/ED spectral functions are available only
for momenta which are integer multiples of 2π/N . Results for additional k-values are obtained using
twisted boundary conditions. On the other hand, DMFT is calculated in the thermodynamical limit,
and the corresponding spectral functions are thus easily obtained for arbitrary k.

2.5.5 HEOM Self-Energies
The results for the spectral functions, as well as for the effective mass and ground state energy, have
shown that the DMFT gives an excellent approximate solution of the 1D Holstein model in the whole
parameter space. This indicates that the self-energy is approximately local. This will now be explicitly
demonstrated using the HEOM results. Since Σk(ω) = Σ−k(ω) we will show only the results for
k ≥ 0.

In Fig. 2.19 we present the HEOM and DMFT self-energies in the intermediate coupling regime.
Figs. 2.19(a) and 2.19(b) show that the self-energies are nearly local, whereas the DMFT solution
interpolates in between. The self-energy is approximately local also for g =

√
2; see Figs. 2.19(c)–

2.19(d). There is a visible discrepancy only at higher momenta, which reflects in a shift of the spectral
functions with respect to the DMFT solution in Figs. 2.9(d) and 2.10(d).

The regime close to the atomic limit is investigated in Fig. 2.20. Panels (c) and (d) show that the
results are nearly local, but have a kind of stripe pattern, unlike the DMFT solution. This is just a
consequence of the finite-size effects. This can be seen by inspecting the DMFT solutions on lattices
with different number of lattice sites N , as shown in Fig. 2.21, which demonstrates that while the
spectral functions are not strongly N -dependent, the details of the self-energy are much more sensitive
to finite-size effects. Here, we see a stripe pattern in the self-energies, but only in the case when the
number of lattice sites N is finite. This is why we see a very good agreement between the DMFT and
N = 6 HEOM spectral functions in Figs 2.9(g) and 2.9(h).
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2.6 Imaginary Time Correlation Functions
At the end of this chapter, let us perform yet another crosscheck of our conclusions, this time by
calculating the correlation function on the imaginary time axis

Ck(τ) = ⟨ck(τ)c†k⟩T,0, (2.36)

where ck(τ) = eτHcke
−τH and 0 ≤ τ ≤ β = 1/T . As a benchmark, we use a quantum Monte Carlo

(QMC), which is capable of producing numerically exact results for Ck(τ).

Remark 12. To apply the QMC, the correlation function in Eq. (2.36) is expressed using the path
integral representation of this quantity, and the imaginary time τ is discretized into small steps ∆τ .
It turns out that the integral over phononic degrees of freedom is Gaussian, and can be evaluated
analytically. Thus, the expression reduces to the multidimensional sum over the electronic coordinates.
This is then calculated via the Monte Carlo method. We note that the QMC results that we use were
obtained by Nenad Vukmirović. The details of the method are presented in Ref. [83]. This is a natural
extension of early works where such an approach was applied just to thermodynamic quantities [84–
86].

Despite being numerically exact, QMC only provides the results on the imaginary time axis.
This cannot be used to reliably obtain spectral functions, especially when the spectrum has several
pronounced peaks, as the numerical continuation to the real-frequency axis is numerically ill-defined.
However, the reverse procedure is achievable: Ck(τ) can easily be calculated from Ak(ω). Therefore,
we have to settle for a comparison on the imaginary axis. The expression that relates these two
quantities can be obtained by expressing Ck(τ) in the energy basis, i.e., using the Lehmann spectral
representation (this is done analogous to Sec. 2.1.2 in Part. I)

Ck(τ) =
1

Z
∑
m,n

e−βEn|⟨n|ck|m⟩|2eτ(En−Em), (2.37)
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where |n⟩, and |m⟩ are states that have exactly zero and one electron, respectively, and an arbitrary
number of phonons. Comparing this to Eq. (2.13) of Part I, we immediately conclude that

Ck(τ) =

∫ ∞

−∞
dω e−ωτAk(ω). (2.38)

Equation (2.38) can now be used to check whether the spectral functions that we calculated using
DMFT (and also HEOM and SCMA) are consistent with the QMC results.

Fig. 2.22 shows the imaginary time QMC, DMFT and HEOM correlation functions and their
deviations from the QMC result, for the same ω0 and g, as in Fig. 2.9(d). We see that deviations
are very small, the relative discrepancy being just a fraction of a percent at T = 1. The discrepancy
between the DMFT and QMC increases at lower temperatures when the nonlocal correlations are
expected to be more important, but it remains quite small even at T = 0.4. We also see that the DMFT
gives better results at k = 0 than at k = π. Furthermore, the SCMA correlation functions show a
clear deviation from other solutions. This is in agreement with our findings in Sec. 2.5. However, as
we see, great care is needed when drawing conclusions from the imaginary axis data since a very
small difference in the imaginary axis correlation functions can correspond to substantial differences
in spectral functions.

In Fig. 2.23 we present the correlation function comparison over a broad set of parameters. The
DMFT, HEOM and QMC are in excellent agreement, with the relative discrepancy of the order of one
percent for τ ∼ 1/T . The SCMA results are also included for comparison.

From Eq. (2.38) we see that the correlation function unevenly treats different frequencies from the
spectral function. Because of the exponential term, it takes into account low-frequency contributions
with much larger weight. Thus, the favorable comparison of DMFT and QMC reveals that the low-
frequency parts of the corresponding spectral functions behave appropriately and fall off fast enough.
This is a very important property for calculating quantities where the low-frequency part gives a large
contribution to the result, which would be the case for optical conductivity.

Let us now estimate how much a Gaussian centered at frequency a,

AGk (ω) =
W

σ
√
2π
e−

(ω−a)2

2σ2 , (2.39)

would contribute to the correlation function. Here W is the spectral weight and σ is the standard
deviation of the Gaussian. This could model a tiny peak present due to the noise, or a real physical
contribution. The corresponding part of the correlation function CG

k can be singled out since Eq. (2.38)
is linear in Ak. It can be evaluated analytically, giving

CG
k (τ) = We

σ2τ2

2
−aτ . (2.40)

We see that the spectral weight contributes linearly, while the position of the delta peak contributes
exponentially (note that a can be negative). The width of the Gaussian σ, as well as the imaginary time
τ , are quadratic inside the exponential. Hence, Eq. (2.40) explicitly shows that precise calculation of
the correlation function requires very accurate spectral functions at low frequencies. Even a small error
or noise can produce a completely wrong result. Reliable comparison of Ck(τ) was made possible
only due to the high precision of both DMFT and HEOM calculations.
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Figure 2.22: DMFT, HEOM, and QMC correlation functions for ω0 = 1, g =
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at several temperatures. The right panels show the relative discrepancy between DMFT and HEOM
results with respect to QMC.
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Figure 2.23: Comparison of DMFT, HEOM, QMC and SCMA correlation functions over a wide range
of parameters. The HEOM results are not available for the parameters in the last row.
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3
Cumulant Expansion Method

The results that we present in this chapter are a product of our work that we published in Ref. [87].

3.1 Introduction
The cumulant expansion (CE) method presents an alternative to the usual Dyson equation approach for
the calculation of spectral functions of interacting quantum many-particle systems [1]. This approxi-
mation assumes that the Green’s function can be written in an exponential form Gk(t) = Gk,0(t)e

Ck(t).
Here, Gk(t) and Gk,0(t) represent the Green’s functions of the full and noninteracting theory respec-
tively, while Ck(t) is the auxiliary function, called the cumulant, that needs to be determined. This
ansatz is based on the exact solution for the Green’s function of the Lundqvist’s X-ray model problem,
which is of exponential form [88, 89]. This is another fermion-boson (core hole-plasmon) model,
whose spectral functions exhibit multiple satellite peaks, analogous to the ones we observed in Chap-
ter 2. Furthermore, it was shown that the cumulant approach gives a correct description of the valence
electrons as well [90]. This suggests that the CE is well suited for the description of both the weak
coupling and atomic limits, while its applicability in other regimes needs to be thoroughly investigated.

CE did not emerge recently. It was extensively used in the past for the studies of electron-phonon
systems in metals, semiconductors, and insulators [91–93], as for plasmonic effects in metals and
free electron gas [90, 94]. Recently, interest in this method has been renewed due to the possibility
of combining CE with ab initio methods. Since then it has been applied to study spectra of a wide
class of matterials, including perovskite SrTiO3 [95], transition-metal oxides ZnO and TiO2 [95, 96],
ionic insulators MgO and LiF [97] etc. Combining the CE with the Kubo formula for charge transport
gives an attractive route to calculate mobility in semiconductors beyond the Boltzmann approach,
which is applicable only for weak electron-phonon coupling [2]. This was very recently demonstrated
for SrTiO3 [98] and naphthalene [99]. CE was even applied to elemental metals Cu, Nb, Pb, Ta and
V, showing that it gives substantial correction to the Migdal approximation in the case of stronger
electron-phonon interaction [100]. Promising results in the case of plasmons have also been emerging,
with significant attention being devoted to the combination of the well-known GW approximation with
the CE [101–107]. Furthermore, CE was used to study absorption spectra in molecular aggregates
representative of photosynthetic pigment-protein complexes [108–110]. Some theoretical progress
in the development of the CE has also been made. As a solution to an uneven treatment of particles
and holes, Kas et al. introduced the CE of the retarded Green’s function, instead of the time-ordered
one, which was commonly used at the time [111]. Generalizations of the CE are also being developed
[112, 113].

Despite the attention that is paid to the theoretical aspect of this method, a thorough assessment
of the range of validity and the limitations of CE is still lacking. One of the purposes of this work
is to fill that gap in the literature. To achieve this, one can turn to simplified models of the electron-
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phonon interaction where reliable benchmarks already exist. In the case of the Fröhlich model, CE
gives the ground state energy and the effective mass [97, 114] similar to the exact QMC calculations
for moderate interaction [115]. This is in contrast to the Dyson-Migdal approach which severely
underestimates mass renormalization. However, a comparison of the corresponding spectral functions
is missing, since reliable QMC results are not available due to the well-known problems with analytical
continuation. In contrast, accurate results for the spectral functions are available in the Holstein model,
as we have already seen in Chapter 2. Therefore, the Holstein polaron model gives a unique opportunity
to explore the applicability of the CE in detail. Recently, a similar feat was conducted in Ref. [116].
Still, there are several questions that remain unresolved. Most importantly, a comparison of spectral
functions was made just for a small set of parameters on a finite-size lattice, where the benchmark
spectral functions were available from the finite-temperature Lanczos results [46], while the charge
transport was not examined at all. On the other hand, our findings from Chapter 2, demonstrating
that DMFT is an extremely cheap and accurate method, make us ideally positioned to perform a
much more thorough analysis of the CE method, using the DMFT as a benchmark. In addition to
calculating the 1D spectral functions in a wider range of parameter regimes compared to Ref. [116],
we extend their results by providing a more comprehensive analysis which includes the spectral sum
rules, quasiparticle properties, charge mobility, as well as the 2D spectral functions.

3.2 Cumulant Expansion: Theoretical Foundations
We have introduced the CE, as a method that assumes the Green’s function to be of exponential form

Gk(t) = Gk,0(t)e
Ck(t) = −iθ(t)e−iεkteCk(t), (3.1)

where Ck(t) is the so-called cumulant function. To apply this, we first need to find a way to calculate
Ck(t). Usually, this is only done in the lowest-order perturbation theory. Such an approach bears the
name the second-order cumulant expansion1, and this will be one of the central themes of this thesis.

3.2.1 Theoretical Framework for the Calculation of the Second-Order Cumu-
lant Function

Even though we introduced the cumulant expansion as an alternative to the Dyson approach, in the
lowest-order perturbation theory the cumulant function is usually calculated from the self-energy in
the Migdal approximation. This is justified because the CE actually improves the results given by the
lowest-order self-energy, as will be demonstrated in the subsequent sections.

To derive the expression for the second-order cumulant function, we start from the leading terms
in the Taylor expansion of the Dyson equation

Gk(ω) = (Gk,0(ω)
−1 − Σk(ω))

−1 ≈ Gk,0(ω) +Gk,0(ω)Σk(ω)Gk,0(ω), (3.2)

and take its inverse Fourier transform, equating it to the leading order terms in Eq. (3.1)

Gk(t) = Gk,0(t)e
Ck(t) ≈ Gk,0(t) [1 + Ck(t)] . (3.3)

We obtain

����������
∫
dω

2π
e−iωtGk,0(ω) +

∫
dω

2π
e−iωtGk,0(ω)Σk(ω)Gk,0(ω) =����Gk,0(t) +Gk,0(t)Ck(t), (3.4)

1The second-order cumulant expansion will often be abbreviated, and we will refer to it simply as the cumulant
expansion.

84



where the first terms on both sides cancel each other out. This can be solved for Ck(t) by explicitly
writing out the free Green’s function as Gk,0(t) = −iθ(t)e−iεkt, and restricting ourselves to positive
times t ≥ 0, which is justified since we are working with retarded quantities. We get

Ck(t) = ieiεkt
∫ ∞

−∞

dω

2π

e−iωtΣk(ω)

(ω − εk + i0+)2
. (3.5)

Using the spectral representation of the self-energy

Σk(ω) =

∫ ∞

−∞

dν

π

|ImΣk(ν)|
ω − ν + i0+

, (3.6)

and the contour integration over ω, Eq. (3.5) simplifies to [111]

Ck(t) =
1

π

∫ ∞

−∞
dω

|ImΣk(ω + εk)|
ω2

(e−iωt + iωt− 1). (3.7)

Since in our derivation, we restricted ourselves to the leading order terms in Eq. (3.1) and the Dyson
equation, we conclude that the self-energy in Eq. (3.7) has to be in the lowest order (i.e., Migdal)
approximation.

From our derivation, we now see all the positive aspects of the CE:

• It can be regarded as a post-processing method, which takes the Migdal self-energy as input and
improves2 those results by using Eqs. (3.7) and (3.1).

• In this derivation, we have not used any specifics of the model we are considering, implying that
Eq. (3.7) is not restricted to the Holstein model, and can be easily combined even with ab inito
methods.

• It is a one-shot method, meaning that it does not contain any iterative self-consistent calculations.
This makes it numerically cheap.

Remark 13. One direct consequence of Eq. (3.7) is that

Ck(t = 0) =
dCk(t)

dt

∣∣∣∣∣
t=0

= 0, (3.8)

meaning that Ck(t) is a quadratic function of time around t ≈ 0. This is important, since the cumulant
function Ck(t) for small t is related to the Green’s function in frequency space for large ω. In addition,
Gk(ω) for large frequencies is related to the spectral sum rules. The latter can be seen by starting
from

Gk(iωn) =

∫ ∞

−∞
dω

Ak(ω)

iωn − ω
=

1

iωn

∫ ∞

−∞
dω

Ak(ω)

1− ω
iωn

≈ 1

iωn

∫ ∞

−∞
dωAk(ω)

[
1 +

ω

iωn
+

(
ω

iωn

)2

+

(
ω

iωn

)3

+ . . .

]
, for iωn ≫ 1, (3.9)

and using the analytical continuation to the real-frequency axis iωn → ω + i0+, obtaining

Gk(ω) ≈
∞∑
n=0

Mn(k)

ωn+1
, for ω → ∞, (3.10)

where Mn(k) is the n-th spectral sum rule, given by Eq. (2.39) from Part I.
Therefore, we conclude that the cumulant function for small times is related to the spectral sum

rules. In general, Ck(t = 0) = 0 is sufficient for the first spectral sum rule
∫
Ak(ω)dω = 1 to be

satisfied, while the second sum rule
∫
Ak(ω)ωdω = εk is a consequence of both conditions in Eq. (3.8).

In Sec. 3.4.3, we will see that within the Holstein model, additional spectral sum rules as satisfied as
well.

2The fact that this method does actually improve the MA, will be demonstrated in the rest of this chapter.
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3.2.2 Numerical Challenges when Applying the Second-order Cumulant Ex-
pansion

The cumulant function can be calculated directly from Eq. (3.7). However, there are some numerical
challenges caused by the removable singularity at ω = 0 and by the rapidly oscillating trigonometric
factor e−iωt for large t. The latter is important for the weak electron-phonon couplings, where it is
necessary to propagate Ck(t) up to long times until the Green’s function is sufficiently damped out.
The same problem occurs in other regimes as well (e.g., close to the atomic limit), where the Green’s
function does not attenuate at all; see Sec. 3.3.2.

The numerical singularity at ω = 0 can be completely avoided if we consider the cumulant’s
second derivative

d2Ck(t)

dt2
=

∫ ∞

−∞

dω

π
ImΣk(ω + εk) e

−iωt ≡ 2eiεktσ̃k(t), (3.11)

where we used ImΣk(ω) < 0 an introduced

σ̃k(t) ≡
∫ ∞

−∞
ImΣk(ω)e

−iωtdω

2π
. (3.12)

Then, Ck(t) is obtained as a double integral over time of Eq. (3.11)

Ck(t) = 2

∫ t

0

dt′
∫ t′

0

dt′′eiεkt
′′
σ̃k(t

′′), (3.13)

where the lower boundaries of both integrals have to be zero, as guaranteed by the initial conditions
that were given in Eq. (3.8). Using the Cauchy formula for repeated integration, this can also be written
as a single integral

Ck(t) = 2

∫ t

0

(t− x)eiεkxσ̃k(x)dx. (3.14)

This completely removed the problem of singularity at ω = 0. Still, the problem of rapid oscillations
of the subintegral function remains, due to the presence of eiεkx term. In Sec. 3.3 we provide an elegant
solution for this issue, focusing on the case of the Holstein model.

Once the cumulant function has been evaluated, Eq. (3.7) determines the Green’s function, while
the spectral function can be calculated as Ak(ω) = (−1/π)ImGk(ω). However, in practice, the free
electron part e−iεkt in Eq. (3.22) typically oscillates much more quickly than eCk(t). Hence, it is much
more convenient to calculate

Ak(ω + εk) =
1

π
Re

∫ ∞

0

dteiωteCk(t), (3.15)

and only subsequently shift the frequency axis ω → ω − εk to obtain Ak(ω).

3.2.3 Asymptotic Expansion for Cumulant when t→ ∞
In Remark 13, we investigated the cumulant function for small t and concluded that it behaves as a
quadratic function of time, as t→ 0. In addition, we noted that such behavior has direct consequences
on the spectral sum rules. Some further insight about the cumulant function can be gained by also
inspecting its behavior for t→ ∞. For example, as we now demonstrate, the quasiparticle properties
within CE are completely determined by the asymptotic expansion of Ck(t) for large times t. To see
that, we start from Eq. (3.11) and obtain

i
dCk

dt
(t→ ∞) = i

∫ ∞

0

d2Ck(t)

dt2
dt = − i

π

∫ ∞

−∞
dω|ImΣk(ω + εk)|

∫ ∞

0

dte−iωt = Σk(εk), (3.16)
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where we used the identity
∫∞
0
dte−iωt = πδ(ω) − iP 1

ω
, and the Kramers-Kronig relations3 for the

self-energy. From Eq. (3.16) and from the functional form of Eq. (3.7), we can conclude that the
cumulant function Ck(t), and thus the whole exponent in Eq. (3.1) is a linear function of time

Ck(t)− iεkt ≈ −iẼkt+ const for t→ ∞, (3.19)

where
Ẽk = εk + Σk(εk). (3.20)

As a consequence, the Green’s function in Fourier space has a simple pole situated at Ẽk, as seen from
the following expression

Gk(ω) = −i
∫ ∞

0

e
it
(
ω−εk− iCk(t)

t

)
dt

= −i
∫ Λ

0

e
it
(
ω−εk− iCk(t)

t

)
dt− i

∫ ∞

Λ

e
it
(
ω−εk− iCk(t)

t

)︸ ︷︷ ︸
≈eit(ω−Ẽk)

for large enough Λ

dt. (3.21)

Therefore, quasiparticle properties are encoded in Ẽk: its real and imaginary parts correspond to the
quasiparticle energy and scattering rate, respectively.

Remark 14. We note that, in our present analysis, we implicitly assumed that dCk

dt
(t→ ∞) exists and

is finite. Although this is generally true, there are a few exceptions. In the Holstein model, the first
assumption is violated at the atomic limit (t0 = 0; see Eq. (3.53)), while the second assumption is
violated at the adiabatic limit (ω0 = 0) for k = 0 or k = ±π; see Eq. (3.45) or Eq. (2.23) from Part I.

The knowledge that we gained about the analytic properties of the Ck(t) provides us with an
intuitive understanding of how the shape of the cumulant determines the shape of the spectral function.
The asymptotic limits t → ∞ (where Ck(t) is linear) and t → 0 (where Ck(t) is quadratic) by
themselves, to a large extent, describe only the simple one-peak spectral functions, while the crossover
between these limits is responsible for the emergence of satellite peaks. This can be explained as
follows: if the cumulant was quadratic over the whole t-domain Ck(t) = ct2, the spectral function
would have a simple Gaussian shape. Similarly, the Lorentzian shape would be obtained from the
linear cumulant Ck(t) = ct. This suggests that the simple crossover between quadratic (at small t)
and linear (at large t) behaviors would also give a simple one-peak shape of the spectral function. The
information about phonon satellites is thus completely encoded in the Ck(t) for intermediate times t,
which depends on the system and approximation in which the cumulant function is calculated.

3.2.4 Alternative Derivation of the Cumulant Function
So far, we derived the expression for the second-order cumulant expansion in terms of the self-energy.
Let us now demonstrate how the cumulant function (not necessarily the second-order Ck(t)) in the
Holstein model can be calculated in general, not resorting to the use of the Dyson formalism.

3Kramers-Kronig relations for the self-energy read as

ReΣk(ω) = ReΣk(ω → ∞) + P
∫
dω′

π

ImΣk(ω
′)

ω′ − ω
, (3.17)

ImΣk(ω) = −P
∫
dω′

π

Re [Σk(ω
′)]− Σk(ω → ∞)

ω′ − ω
, (3.18)

but we restrict ourselves to the case when Σk(ω → ∞) = 0, which is relevant in our case.
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3.2.4.1 Setting up the Notation

In Eq. (2.14) of Part I, we showed that the Green’s function can be written in the following form

Gk(t) = −iθ(t)⟨ck(t)c†k⟩T,0, (3.22)

where ck(t) = eiHtcke
−iHt. For the sake of this section, it turns out that it is convenient to separate the

HamiltonianH as in Eq. (1.2) of Part I, into its electron partHel, phonon partHph, and electron-phonon
coupling part Hel−ph. These terms are given by4

Hel = −t0
∑
⟨ij⟩

(
c†icj +H.c.

)
=
∑
k

εkc
†
kck, (3.23a)

Hph = ω0

∑
i

a†iai = ω0

∑
k

a†kak, (3.23b)

Hel−ph = −g
∑
i

c†ici
(
a†i + ai

)
= − g√

N

∑
k,q

c†k+qck

(
aq + a†−q

)
. (3.23c)

Remark 15. As explained in Sec. 2.1.2 of Part I, the symbol ⟨. . . ⟩T,0 in Eq. (3.22) denotes the thermal
average over the states with no electrons and an arbitrary number of phonons. For the rest of this
section, to avoid possible confusion, we introduce a more explicit notation |0, ñp⟩, which denotes an
arbitrary5 state with np phonons and no electrons. The sum over all possible phonon configurations
will be denoted by

∑
{np}. Using these, the expectation value ⟨x⟩T,0, for arbitrary x can be expressed

as

⟨x⟩T,0 =
∑

{np}⟨0, ñp|e−Hph/Tx|0, ñp⟩∑
{np}⟨0, ñp|e−Hph/T |0, ñp⟩

. (3.24)

Furthermore, we also introduce |k, ñp⟩ ≡ c†k|0, ñp⟩ and Zp =
∑

{np}⟨0, ñp|e−Hph/T |0, ñp⟩.

3.2.4.2 Theoretical Framework for the Calculation of the Cumulant Function of Arbitrary
Order

Starting from Eq. (3.22), and using the fact that |0, ñp⟩ is an eigenstate of both the full and the phononic
Hamiltonian H|0, ñp⟩ = Hph|0, ñp⟩ = npω0|0, ñp⟩ it follows that

Gk(t) =
−iθ(t)
Zp

∑
{np}

eiω0npte−npω0/T ⟨0, ñp|cke−iHtc†k|0, ñp⟩. (3.25)

The term e−iHt can be expressed using the identity that relates two different, but equivalent, forms for
the evolution operator in the Dirac picture,

eiHelteiHphte−iHt = T̂t exp

[
−i
∫ t

0

dt1H
(I)
el−ph(t1)

]
, (3.26)

giving

e−iHt = e−iHphte−iHelt T̂t exp

[
−i
∫ t

0

dt1H
(I)
el−ph(t1)

]
. (3.27)

Here, H(I)
el−ph is the electron-phonon interaction part of the Hamiltonian in the Dirac picture and T̂t

is the time-ordering operator. Using the fact that the purely phononic part e−iHpht, and the purely
electronic part e−iHelt can be easily dealth with using

⟨0, ñp|e−iHpht = e−iω0npt⟨0, ñp|, (3.28a)

4Here, N is the number of sites, that we take to be infinitely large N → ∞, in order to get the thermodynamic limit.
5We say ’arbitrary’ because such state is not unique.
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⟨0, ñp|cke−iHelt = e−iεkt⟨0, ñp|ck, (3.28b)

we see that Eq. (3.25) becomes

Gk(t) = −iθ(t)Zp

e−iεkt
∑
{np}

e−npω0/T

〈
0, ñp

∣∣∣∣ckT̂t exp [−i ∫ t

0

dt1H
(I)
el−ph(t1)

]
c†k

∣∣∣∣0, ñp〉 (3.29a)

≡ −iθ(t)e−iεkt
〈
T̂te

−i
∫ t
0 dt1H

(I)
el−ph(t1)

〉
T,k

. (3.29b)

The expressions of the form (3.29b) have been extensively studied in the past. As shown in Eq. (6.10)
of Kubo’s cumulant paper [117], the expectation value with the time-ordering can be written as〈

T̂te
−i

∫ t
0 dt1H

(I)
el−ph(t1)

〉
T,k

= exp
〈
T̂te

−i
∫ t
0 dt1H

(I)
el−ph(t1) − 1

〉
T,k,c

≡ eCk(t), (3.30)

giving

Ck(t) =
∞∑
j=1

〈
T̂t
(−i)j
j!

∫ t

0

j∏
m=1

dtmH
(I)
el−ph(tm)

〉
T,k,c

. (3.31)

Therefore, where we finally found the expression for the cumulant function Ck(t) from Eq. (3.1). The
notation ⟨. . . ⟩c denotes the so-called cumulant average. In general, the cumulant average is defined
using the ordinary average, by formally expanding the following expression in the Taylor series with
respect to ξi and equating, order by order, the terms on the left- and the right-hand side〈

exp
∑
j

ξjXj

〉
= exp

〈(
exp

∑
j

ξjXj

)
− 1

〉
c

, (3.32)

where the −1 term on the right-hand side is motivated by the fact that the expectation value of the
unity operator is equal to 1. We note that there is actually an analytic formula that relates the cumulant
average of any order with the ordinary average [118], but that will not be necessary for our present
purposes.

3.2.4.3 Theoretical Framework for the Calculation of the Second-order Cumulant Function

In Sec. 3.2.4.2, everything was exact. Let us now demonstrate that the second-order cumulant from
Eq. (3.7) corresponds to the approximation in which only the first two terms in Eq. (3.31) (j = 1 and
j = 2 terms) are kept, while everything else is neglected. This is why this is known as the second-order
cumulant expansion. To achieve this, we explicitly write out the first two cumulant averages in terms
of the ordinary averages

⟨X1⟩c = ⟨X1⟩, (3.33a)
⟨X1X2⟩c = ⟨X1X2⟩ − ⟨X1⟩⟨X2⟩. (3.33b)

As we see from Eq. (3.33a), the cumulant average coincides with the ordinary average for j = 1,
and hence vanishes when used in Eq. (3.31) due to Wick’s theorem. As a consequence, the cumulant
average can be simply replaced by the ordinary average in the case of j = 2 term as well; see
Eq. (3.33b). Therefore, the second-order cumulant function reads as

Ck(t) = −1

2

∫ t

0

dt1

∫ t

0

dt2

〈
T̂tckH

(I)
el−ph(t1)H

(I)
el−ph(t2)c

†
k

〉
T,0
. (3.34)

For a straightforward application of Wick’s theorem, it is customary to rewrite electron creation and
annihilation operators in the Dirac picture. In order not to change the already existing time ordering in
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Eq. (3.34), the annihilation operator is expressed in the final time ck = eiεktc
(I)
k (t), while the creation

operator is expressed in the initial time c†k = c
†(I)
k (0). If we also use the explicit form of H(I)

el−ph(t)
from Eq. (3.23c), the Eq. (3.34) becomes

Ck(t) =− g2

2N
eiεkt

∫ t

0

dt1

∫ t

0

dt2〈
T̂tc

(I)
k (t)

∑
k1,q1

c
†(I)
k1+q1

(t1)c
(I)
k1
(t1)A

(I)
q1
(t1)

∑
k2,q2

c
†(I)
k2+q2

c
(I)
k2
(t2)A

(I)
q2
(t2)c

†(I)
k (0)

〉
T,0

, (3.35)

where we introduced the shorthand notation for the phonon part Aq = aq + a†−q. Equation (3.35)
is now easily evaluated using Wick’s theorem. Contraction between the phonon degrees of freedom
gives [1] 〈

T̂tA
(I)
q1
(t1)A

(I)
q2
(t2)
〉
= δq1,−q2iD(t1 − t2), (3.36)

where iD(t1 − t2) = (nph + 1)e−iω0|t1−t2| + nphe
iω0|t1−t2| is the phonon propagator, while nph =

1/(eω0/T −1) is the Bose factor. Since we are working in the limit of vanishing electron density (single
electron in a band), the contraction between the electron creation and annihilation operators does not
have a hole part, and hence reads as〈

T̂tc
(I)
k (t1)c

†(I)
q (t2)

〉
= δk,q e

−iεk|t1−t2|θ(t1 − t2). (3.37)

Taking all of this into account, Eq. (3.35) simplifies

Ck(t) = − g2

2N

∑
q

∫ t

0

dt1

∫ t

0

dt2e
i(εk−εq)|t2−t1|iD(t2 − t1). (3.38)

We can get rid of the absolute value by noticing that the contributions for t2 > t1 and for t2 < t1
are equal. It is thus sufficient to restrict ourselves to t2 > t1 and multiply everything by 2. Also, the
expression can be further simplified if we use

ei(εk−εq±ω0)(t2−t1) =

∫ ∞

−∞
dωe−iω(t2−t1)δ(ω + εk − εq ± ω0).

Then, the whole q dependence is inside the Dirac delta function, which in combination with the
summation over q gives ∑

q

δ(ω + εk − εq ± ω0) = Nρ(ω + εk ± ω0), (3.39)

where ρ is the density of states. It is now straightforward to show that Eq. (3.38) reduces to

Ck(t) = g2
∫ ∞

−∞
dω
e−iωt + iωt− 1

ω2
[(nph + 1)ρ(ω + εk − ω0) + nphρ(ω + εk + ω0)] . (3.40)

This expression can be rewritten in terms of the Migdal self-energy (see Eq. (2.28) from Part I)

Ck(t) =
1

π

∫ ∞

−∞
dω

|ImΣMA(ω + εk)|
ω2

(e−iωt + iωt− 1), (3.41)

where we used the analytic property of self-energy ImΣ < 0.

Remark 16. We note that the cumulant expansion method that we have now presented is analogous
to the linked cluster expansion for the thermodynamic potential in statistical mechanics. This is a
consequence of the fact that both of these require evaluating quantities of the same mathematical
form, ln (Gk(t)/Gk,0(t)) and ln(Z/Z0), where Z and Z0 are the partition function of the full and
noninteracting theories.
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3.3 Second-Order Cumulant Expansion for the Holstein Model:
Implementation and Basic Properties

3.3.1 Cumulant Function in the Holstein Model
From now on, we exclusively concentrate on the Holstein model on a hypercubic lattice in d dimen-
sions, in the thermodynamic limit N → ∞. The expression for the cumulant function, as seen from
Eqs. (3.14) and (3.12), is related to the inverse Fourier transform of ImΣMA(ω), which in turn is com-
pletely determined by the inverse Fourier transform of the density of states ρ̂(t); see Eq. (2.28) from
Part I. The latter admits a closed-form solution6

ρ̂(t) =

∫ ∞

−∞

dωe−iωt

(2π)d+1

∫
[0,2π)d

ddk δ

(
ω + 2t0

d∑
j=1

cos kj

)

=
1

2π

(
1

2π

∫ 2π

0

dke2it0t cos k
)d

=
J0(2t0t)

d

2π
, (3.42)

where J0 is the Bessel function of the first kind of order zero. Hence, Eqs. (3.14),(3.12), (2.28) from
Part I, and (3.42) imply that the cumulant function can be written as

Ck(t) = −g2
∫ t

0

dx(t− x)iD(x)eixεkJ0(2t0x)
d, (3.43)

where iD(t) = (nph + 1)e−iω0t + nphe
iω0t is the phonon propagator in real time (for t > 0).

In Fig. 3.1 we illustrate the cumulant function, as well as the corresponding Green’s function and
spectral function. Figs. 3.1(a) and 3.1(b) show the second derivative of the cumulant

d2Ck(t)

dt2
= −g2iD(t)eitεkJ0(2t0t)

d, for d = 1, (3.44)

in order to demonstrate the rapid oscillations that are also present in the cumulant itself. These are
not easily observed by inspecting Ck(t) directly, as the linear behavior dominates for large times. We
observe that the k = 0 and k = π results possess an oscillating envelope with period 2π/ω0, while
intermediate momenta have a much less regular structure. This can have direct consequences on the
spectral functions, as the satellite peaks are expected to be at a distance ω0 from each other. To be more
explicit, oscillating envelopes suggest that there is a much higher chance for the occurrence of satellite
peaks near the bottom (k ≈ 0) and the top (k ≈ π) of the band, than otherwise. However, that does
not guarantee that the satellite peaks will in fact occur. Figure 3.1(c) shows that ReCk(t) is declining
faster for k > 0 than for k = 0. As a consequence, eCk(t) in Fig. 3.1(d) attenuates slower for k = 0,
having enough time to complete a full period, while k = π results are reminiscent of an overdamped
oscillator. A similar, although much less evident, effect can be seen in the Green’s function itself; see
Fig. 3.1(e). This is why the k = π spectral function in Fig. 3.1(f) has a simple one-peak shape, while
only the k = 0 result captures one small satellite peak.

From a numerical point of view, Eq. (3.43) is treated using Levin’s collocation method [119],
which is reviewed in Appendix B. It provides a controlled, accurate, and numerically efficient way to
integrate the product of trigonometric, Bessel, and some slowly-varying function. This approach avoids
using a dense t-grid, which would otherwise be required, as the subintegral function in Eq. (3.43) has
the same type of rapid oscillations present in d2Ck(t)/dt

2.

6We note that this derivation is completely analogous to the one presented in Eq. (1.113), with the only difference being
that the noninteracting dispersion relation now reads as εk = −2t0

∑d
j=1 cos kj .
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Figure 3.1: The cumulant, Green’s and spectral function on the example of the one-dimensional
Holstein model with the following values of the model parameters: ω0 = 0.2, g = 0.2, T = 0.3 and
t0 = 1.

3.3.2 Lifetime
Another question of practical importance is how long should we propagate the cumulant function in
real-time until the corresponding Green’s function attenuates. A rough estimate of such quantity is
given by the quasiparticle lifetime τk. The lifetime is determined as τk = 1/(2|ImẼk|), where Ẽk is
given by Eq. (3.20), while the self-energy is taken in the Migdal approximation (see Eq. (2.28) from
Part I)
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Figure 3.2: Quasiparticle lifetime τk in the CE method for T/t0 = 2 and g/t0 = 1.

τ−1
k = 2|ImẼk| =2g2

θ(4t20 − (εk − ω0)
2)√

4t20 − (εk − ω0)2
(nph + 1) + 2g2

θ(4t20 − (εk + ω0)
2)√

4t20 − (εk + ω0)2
nph. (3.45)

This is illustrated in Fig. 3.2. We observe that there is a considerable part of the parameter space
where the lifetime is infinite, which means that the corresponding Green’s function never attenuates.
This occurs for ω0 > 2t0+2t0| cos k| in the case of finite temperatures, and for ω0 > 4t0 sin

2 k/2 in the
T = 0 case. In these regimes, one could presume that this is reflected in the spectral functions through
the appearance of Dirac delta peaks, which is not expected at finite temperatures. This illustrates one
of the limitations of this method.

3.4 Spectral Functions
In this section, we present the CE spectral functions of the 1D Holstein model. The DMFT is used as
a reliable benchmark, while MA and SCMA represent the main competitors and alternatives to the CE
method. Sec. 3.4.1 shows the results for k = 0, whereas heat plots and the k = π results are shown
in Sec. 3.4.2. High-temperature spectral functions and spectral sum rules are presented in Sec. 3.4.3.
The behavior near the atomic limit is discussed in Sec. 3.4.4. In these sections, we present only the
results for ω0 = 0.5, while the results for other phonon frequencies and various momenta are shown in
Sec. 3.7. Furthermore, we also calculate the 2D spectral functions, but these results will be postponed
until Sec. 3.6.

3.4.1 Low and Intermediate Temperatures for k = 0

In the weak-coupling limit α → 0, all these approximate methods (DMFT, CE, SCMA, MA) provide
accurate results. In Fig. 3.3 we investigate how far from this strict limit each of our methods continues
to give reasonably accurate spectral functions. In Fig. 3.3(a), we see that for α = 1 all methods
correctly capture the QP peak, which dominates in the structure of the spectrum. The MA satellite
peak is slightly shifted towards higher frequencies, which becomes significantly more pronounced at
higher temperatures; see Fig. 3.3(b). The limitations of the MA become more obvious for stronger
couplings, where even the position and the weight of the QP peak are inaccurate; see Figs. 3.3(c)–
3.3(h).
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Figure 3.3: Spectral functions for t0 = 1, ω0 = 0.5 and k = 0. In the left panels T = 0.3, while
T = 0.7 in the right panels. Insets show the integrated spectral weights Ik(ω) =

∫ ω
−∞Ak(ν)dν.

While the QP properties of the CE and SCMA seem to be quite similar if α is not too large, some
difference in satellite peaks is already visible in Figs. 3.3(b) and 3.3(c). Figure 3.3(c) shows that
SCMA gives broader satellites than the DMFT benchmark, whereas CE slightly underestimates the
position of the satellite. Neither CE nor SCMA can be characterized as distinctly better in this regime.
On the other hand, Figs. 3.3(e) and 3.3(g) display a clear advantage of the CE. We see that it captures
rather well the most distinctive features of the solutions, which are the first few satellites. This is not
the case for SCMA.

Figures 3.3(f) and 3.3(h) demonstrate that the CE gives a rather quick crossover toward the high-
temperature limit, as it predicts a simple broad one-peak structure for the spectral function already
for T = 0.7. This large difference between the spectral functions for T1 = 0.3 and T2 = 0.7 can be
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understood by examining the ratio of their corresponding lifetimes τ(T1)/τ(T2) = nph(T2)/nph(T1) ≈
8.5. This implies that ReCk(t) for T = 0.7 has a much steeper slope as a function time, which
suppresses the appearance of satellites, as explained in Sec. 3.3.

Remark 17. Once again, we emphasize that the role of the DMFT is to help us decide whether CE or
MA/SCMA gives more accurate results. It is not expected that a simple method like CE could outper-
form the nonperturbative DMFT, which is why some even more sophisticated method (like HEOM) was
not included in the comparison. Furthermore, since the CE is built upon MA (see Eq. (3.7)), the very
use of the CE needed to be justified by showing that it gives more reliable predictions than MA. This
is seen from our k = 0 results, which demonstrate a much greater superiority of the CE (compared to
MA) than one could have initially anticipated7. We checked that the same conclusions hold true even
for other parameter regimes. Since MA gives vastly different results than all other methods (including
benchmark) for stronger α, in the subsequent figures showcasing spectral functions, MA will be mostly
omitted8, due to clarity, and our discussion will be mainly focused on comparing the quality of CE
and SCMA methods. However, it should be noted that such a comparison is not completely fair, due to
the fact that SCMA uses a self-consistent loop, while CE is a one-shot method.

3.4.2 Low and Intermediate Temperatures for k ̸= 0

To proceed with the analysis of the CE we want to answer:

• Whether the conclusions that we reached for k = 0 can be carried over to other momenta as
well?

• Does CE continue to be better than SCMA at much higher temperatures?

The first question is answered in Fig. 3.4, where we compare CE and DMFT heat plots. Fig-
ures 3.4(a) and 3.4(b) demonstrate that CE results are quite reminiscent of the DMFT results for
α = 1, even at non-zero momenta. The same conclusion holds for weaker couplings as well. On the
other hand, there are differences between the results for somewhat stronger coupling α = 1.5, as shown
in Figs. 3.4(c) and 3.4(d). While the polaron bands in both of these figures are convex, the CE predicts
the first satellite to be concave, unlike the DMFT. In other words, CE predicts that the distance between
the polaron peak and the satellites decreases, as we increase the momentum. This is counterintuitive,
as the satellites are perceived as the QP that absorbed or emitted a phonon, which should consequently
be just at energy distance ω0 apart. These limitations of the CE are much more pronounced for stronger
electron-phonon couplings. While the DMFT solution in Figs. 3.4(f) and 3.4(h) exhibits a series of
distinct bands, Figs. 3.4(e) and 3.4(g) demonstrate that the polaron and the satellite bands of the CE
merge into a single band at higher momenta. However, the most noticeable feature here is the fact
that the CE is too smeared, as if the temperature is too high. This is a consequence of the fact that the
lifetime in Eq. (3.45) scales as τk ∼ 1/g2.

While the heat maps reveal noticeable discrepancies between the DMFT and CE for k ̸= 0, it
seems that these differences are much less pronounced around k = π. A more detailed comparison is
presented in Fig. 3.5 that shows the results for the same regimes as in Fig. 3.3. The DMFT solution
in Figs. 3.5(a)–3.5(d) shows that the main feature of the spectral function is a single broad peak for
α ≲ 1.5, which is in agreement with the CE results. This is also the case for the SCMA, although we
observe a slight tendency of the main peak to lean toward higher frequencies at higher temperatures.
For larger interaction strengths, CE cannot fully reproduce the sharp peaks at lower frequencies of

7It should be noted that k = 0 results are the most important for the mobility and optical conductivity predictions in
systems with low concentration of charge carriers, which we are interested in. The comparison of mobility predictions of
different methods is shown in Sec. 3 of Part III.

8Some additional MA spectral functions will be showed in Sec. 3.7, while MA quasiparticle properties are briefly
discussed in Sec. 3.5,

95



2 0 24
2
0
2
4

2 0 24
2
0
2
4

2 0 24
2
0
2
4

2 0 24
2
0
2
4

2 0 24
2
0
2
4

2 0 24
2
0
2
4

2 0 2
k

4
2
0
2
4

2 0 2
k

4
2
0
2
4

0

2

4

0.0

0.5

1.0

0

1

2

0

1

2

3

0

2

4

0.0

0.5

1.0

1.5

0.0
0.2
0.4
0.6
0.8

0.0

0.2

0.4

= 1

= 1.5

= 2

= 2.5

= 1

= 1.5

= 2

= 2.5

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.4: Heat maps of Ak(ω) for t0 = 1,
ω0 = 0.5 and T = 0.3. In the left panels, we
present CE results, while the DMFT benchmark
is presented in the right panels. All plots use the
same color coding.

1 2 30.0

0.5

1.0

1.5

A(
)

(a)

0 1 2 3 0.0

0.5

(b)

2 0 2 40.0
0.2
0.4
0.6
0.8

A(
)

(c)

2 0 2 4 0.0

0.2

0.4(d)

2 0 2 40.0

0.2

0.4

A(
)

(e)

4 2 0 2 4 0.0

0.1

0.2

0.3(f)

2 0 2 40.0

0.2

0.4
A(

)
(g)

4 0 4 0.0

0.1

0.2(h)

= 1

= 1.5

= 2

= 2.5

k =

DMFT
CE
SCMA

Figure 3.5: Spectral functions for t0 = 1, ω0 =
0.5 and k = π. In the left panels T = 0.3, while
T = 0.7 in the right panels.

the low-temperature spectral function or the fine structure of the main peak at higher temperatures;
see Figs. 3.3(e)–3.3(h). Similarly, CE misses the quasiparticle peak as well, situated at low energy,
although it is typically tiny and not (clearly) visible in Figs. 3.5(a)–3.5(h); see Appendix C in Ref. [87].

Overall, we find that the CE gives the most accurate results for k = 0 and k = π and that it is less
accurate for other momenta. Although it cannot fully reproduce a tiny quasiparticle peak for k = π,
it describes well a wide single-peak structure, which is the most prominent feature of the spectrum.
A much larger discrepancy for k = π, between the CE and a reliable benchmark, was reported in
Ref. [116], by examining the system on a finite lattice system with N = 6. However, in Appendix C of
Ref. [87] we examined the same parameter regime as in Ref. [116] and showed that these discrepancies
are significantly reduced in the thermodynamic limit.

3.4.3 Spectral Functions at High Temperatures and Spectral Sum Rules
In Fig. 3.6 we show CE, SCMA, and DMFT spectral functions at high temperatures, for the same
electron-phonon couplings as in Figs. 3.3 and 3.5. We see that CE performs very well, both for k = 0
and k = π. There are only small discrepancies at stronger interactions (see, e.g., Fig. 3.6(c)). In
contrast, the SCMA solution gets tilted relative to the DMFT and CE. In addition, it poorly reproduces
the low-frequency part of the spectrum. Although these promising CE results might lead one up to
suspect that CE is exact in the high temperature limit T → ∞, it is not immediately obvious whether
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this is true. As we now demonstrate, this can be answered by examining the spectral sum rules.
In Sec. 2.4 of Part I we showed how the exact n-th spectral sum rule Mn(k) is calculated in theory,

while the specific expressions for 0 ≤ n ≤ 8 were listed in Sec. 2.3.2. Let us now calculate the spectral
sum rules within the CE method. To do so, we first define an auxiliary quantity

NCE
n (k) =

∫ ∞

−∞
ACE

k (ω + εk)ω
ndω. (3.46)

Using Eq. (3.15), we expand this quantity as follows

NCE
n (k) =

∫ ∞

−∞

dω

π
ωnRe

∫ ∞

0

dteiωteCk(t) =
1

π
Re

∫ ∞

0

dteCk(t)

∫ ∞

−∞
dωωneiωt

=
1

π
Re

∫ ∞

0

dteCk(t)
1

in

(
d

dt

)n ∫ ∞

−∞
dωeiωt =

1

π
Re

∫ ∞

0

dteCk(t)2π(−i)nδ(n)(t)

= Re

[
in
(
d

dt

)n
eCk(t)

] ∣∣∣∣
t=0

. (3.47)

If we now go back to Eq. (3.46) and use a substitution ω → ω − εk we get

NCE
n (k) =

∫ ∞

−∞
(ω − εk)

nACE
k (ω)dω =

∫ ∞

−∞
dωACE

k (ω)
n∑

m=0

(
n

m

)
ωn−m(−εk)m

= MCE
n (k) +

n∑
m=1

(
n

m

)
(−εk)mMCE

n−m(k), (3.48)

where MCE
n (k) is the n-th spectral sum rule, as predicted by the CE method. Moving the term with

the sum to the left-hand side, and using Eq. (3.47), we obtain

MCE
n (k) = Re

[
in
(
d

dt

)n
eCk(t)

] ∣∣∣∣
t=0

−
n∑

m=1

(
n

m

)
(−εk)mMCE

n−m(k). (3.49)

This can be easily evaluated for arbitrary n using recursion and Eqs. (3.8) and (3.44). In fact, the
following relation (which follows from Eq. (3.44)) makes this even easier
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d2+nCk(t)

dt2+n

∣∣∣∣∣
t=0

=− g2(nph + 1) [i(εk − ω0)]
n
2F1(

1− n

2
,−n

2
; 1;

4t20
(εk − ω0)2

)

− g2nph [i(εk + ω0)]
n
2F1(

1− n

2
,−n

2
; 1;

4t20
(εk + ω0)2

), (3.50)

where 2F1 is the hypergeometric function. However, since we are interested in only the first few sum
rules, the general expression in Eq. (3.50) is not necessary.

The first five (0 ≤ n ≤ 4) sum rules read as:

MCE
0 (k) = 1, (3.51a)

MCE
1 (k) = εk, (3.51b)

MCE
2 (k) = ε2k + (2nph + 1)g2, (3.51c)

MCE
3 (k) = ε3k + g2ω0 + 2g2(2nph + 1)εk, (3.51d)

MCE
4 (k) = ε4k + 2g2εkω0 + g2(2nph + 1)(2t20 + 3ε2k + ω2

0) + 3g4(2nph + 1)2. (3.51e)

All of these coincide with the exact sum rules from Eq. (2.15). However, for n = 5, we find that

MCE
5 (k) = M5(k)− 2g4εk(2nph + 1)2, (3.52)

where M5(k) is the exact result which is given by Eq. (2.15f). Since g4εk(2nph + 1)2 is the leading
order term (with respect to T ) in the high-temperature limit, we conclude that CE cannot be exact
when T → ∞.

Remark 18. To make this analysis more complete, we note that the SCMA gives correct sum rules only
for n ≤ 3; see Sec. 2.3.3 or Ref. [72]. On the other hand, in Appendix F we numerically checked that
the DMFT results are in agreement with all the sum rules that we calculated analytically in Sec. 2.3.2
(0 ≤ n ≤ 8).

3.4.4 Atomic Limit
The CE and the exact spectral sum rule in Eq. (3.52) coincide when g → 0 or t0 → 0 (which means
that εk → 0). These correspond to the weak coupling and the atomic limits, respectively. It turns out
that the CE is actually exact in both of these limits. In this section, we prove this for the atomic limit,
while for the weak coupling limit this follows by construction from Eqs. (3.1), (3.7) and (2.28) of
Part I.

In the atomic limit (t0 = 0) Eq. (3.43) greatly simplifies, since J0(2t0t) = J0(0) = 1, so the
cumulant function can be evaluated exactly9

C(t) = α2(−2nph − 1 + itω0 + iD(t)). (3.53)

If we express the phonon propagator iD(t), given below Eq. (3.43), as

iD(t) = 2
√
nph(nph + 1) cos

[
ω0

(
t+

i

2T

)]
, (3.54)

then the Green’s function in the time domain reads as

Gk(t) = −iθ(t)e−α2(2nph+1)eiα
2ω0te2α

2
√
nph(nph+1) cos[ω0(t+ i

2T )]. (3.55)

To obtain the corresponding spectral function, we first need to do a Fourier transform which would be
straightforward if the last exponential in the above equation was expressed in a plane wave representa-
tion. This can be achieved using the so-called modified Jacobi-Anger identity, which we formulate as
a lemma:

9In the atomic limit there is no k dependence, so we denote the cumulant function as C(t) instead of Ck(t).
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Lemma 1. For arbitrary z, θ ∈ C, it holds that

ez cos θ =
∞∑

l=−∞
Il(z)e

−ilθ, (3.56)

where Il are the modified Bessel function of the first kind.

Proof. Let us use the Euler representation of cos θ, and the Taylor expansion of the exponential func-
tion

ez cos θ = exp

[
z
eiθ + e−iθ

2

]
= e

1
2
zeiθe

1
2
ze−iθ

=
∞∑
m=0

1

m!

(z
2

)m
eimθ

∞∑
n=0

1

n!

(z
2

)n
e−inθ

=
∞∑
m=0

∞∑
n=0

1

m!n!

(z
2

)m+n

ei(m−n)θ. (3.57)

Using the substitution10 l = m− n, we obtain

ez cos θ =
∞∑

l=−∞

∞∑
n=0

1

(n+ l)!n!

(z
2

)2n+l
︸ ︷︷ ︸

=Il(z)

eilθ =
∞∑

l=−∞
Il(z)e

ilθ, (3.58)

where we recognized a series representation for the modified Bessel function of the first kind [120].
Since the previous expression remains valid for arbitrary z and θ, we can use a substitution θ → −θ
to finally prove our lemma

ez cos θ =
∞∑

l=−∞
Il(z)e

−ilθ. (3.59)

Now, the plane wave representation of the last exponential in Eq. (3.55) is directly obtained using
Eq. (3.59) with z = 2α2

√
nph(nph + 1) cos

[
ω0

(
t+ i

2T

)]
and θ = ω0(t+

i
2T
), giving

e2α
2
√
nph(nph+1) cos[ω0(t+ i

2T )] =
∞∑

l=−∞
Il

(
2α2
√
nph(nph + 1)

)
e−ilω0te

lω0
2T , (3.60)

The spectral function is now directly obtained and reads as

A(ω) = e−α
2(2nph+1)

∞∑
l=−∞

Il

(
2α2
√
nph(nph + 1)

)
e

lω0
2T δ(ω + α2ω0 − lω0). (3.61)

In the limit T → 0, the terms for l < 0 are vanishing, while the rest of the expression can be simplified
using

e
lω0
2T =

(
nph + 1

nph

) l
2

, and Il(x) ≈
xl

2ll!
as x→ 0, (3.62)

as follows

Il

(
2α2
√
nph(nph + 1)

)
e

lω0
2T ≈

(
2α2
√
nph(nph + 1)

)l
2ll!

(
nph + 1

nph

) l
2

→ α2l

l!
as T → 0. (3.63)

10l goes from −∞ to ∞
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As a result, Eq. (3.61) simplifies in the T → 0 limit, and we obtain

A(ω) = e−α
2

∞∑
l=0

α2l

l!
δ(ω + ω0(α

2 − l)). (3.64)

We see that Eqs.(3.61) and (3.64) coincide with the exact results; see Eqs.(2.29) and (2.21). Therefore,
this completes the proof that CE is exact in the atomic limit.

Remark 19. As we already proved in Sec. 2.4.3, the SCMA does not provide good results in the atomic
limit. This is another advantage of the CE method compared to the SCMA.

4 2 0 2 40.0

0.5

1.0

1.5

A k
(

)

t0 = 1.0(a)

DMFT
RC
SCMA
ATOMIC

4 2 0 2 40.0

0.5

1.0

1.5

A k
(

)

t0 = 0.5(b)

0 = 1
  g = 1
  T = 1
  k = 0

4 2 0 2 40.0

0.5

1.0

1.5

A k
(

)

t0 = 0.05(c)

4 2 0 2 40.0

0.5

1.0

1.5

A k
(

)

t0 = 0.005(d)

Figure 3.7: CE, DMFT, and SCMA spectral functions close to the atomic limit, for k = 0. Here, we
use artificial Lorentzian broadening with half-width set to η = 0.05.

While the CE is exact in the atomic limit (t0 = 0), it is not immediately obvious how far from
this limit it continues to give reliable results. This is why we now examine the regimes with small
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hopping parameter t0. Since the lifetime is infinitely large in some of these regimes (see Fig. 3.2),
we introduce artificial attenuation η for the Green’s function in real-time by making a replacement
G(t) → G(t)e−ηt. The results are presented in Fig. 3.7. As always, the DMFT represents a reliable
benchmark, while the dotted line is the analytic solution at the atomic limit (t0 = 0), determined by
Eq. (3.61), where the Dirac delta functions have been replaced by Lorentzians of half-width η. It is
used as a measure to see how far the regime we are examining, is from the exact atomic limit. In
Fig. 3.7(a), we see that DMFT, SCMA, and CE spectral functions are in agreement. This regime is
quite far from the atomic limit, as indicated by the dotted line. Figure 3.7(b) shows that the DMFT
spectral function already consists of a series of peaks for t0 = 0.5, while the CE and SCMA spectral
functions are too flattened out. While the CE solution significantly improved in Fig. 3.7(c), it is still
not giving satisfactory results, even though the DMFT suggests that we are already close to the atomic
limit. Only for t0 ≲ 0.005 does the CE solution give accurate results; see Fig. 3.7(d). However, this is
practically already at the atomic limit. It is interesting to note that while both the DMFT and the CE
are exact in the weak-coupling and in the atomic limit, their behavior in other regimes can be quite
different.

3.5 Quasiparticle Properties
We now investigate the quasiparticle properties obtained from the CE method and compare them
extensively to the results obtained from the DMFT and SCMA. We note that the lifetime within the
CE was already studied in Sec. 3.3.2, so we supplement that study here with the results for the ground
state energy and the effective mass. Here we show the results in one, two, and three dimensions.

3.5.1 Ground State Energy

3.5.1.1 Analytical Results

The polaron band dispersion Ep,k within the CE is given by the real part of Eq. (3.20), where the
self-energy is taken in the Migdal approximation

Ep,k = εk +ReΣMA(εk). (3.65)

Since we deal with a single electron in the band, the ground state energy Ep is given by Ep,k=0

evaluated at zero temperature. In the one-dimensional case, Ep is straightforwardly evaluated using
Eq. (2.23) from Part I, and reads as follows

E1D
p = −2t0 −

α2ω2
0√

ω2
0 + 4ω0t0

. (3.66)

For the expression in higher dimensions, we use Eq. (2.28) from Part I at T = 0, which holds in any
number of dimensions

ImΣMA(ω) = −πα2ω2
0ρ(ω − ω0). (3.67)

The real part of ΣMA(ω), which we are interested in, is obtained using the Kramers-Kronig relation

ReΣMA(ω) = πα2ω2
0H[ρ](ω − ω0), (3.68)

where H[ρ](ω) = P
∫∞
−∞

dν
π
ρ(ν)
ω−ν is the Hilbert transform of the density of states ρ(ω) and P is the

Cauchy principle value. The evaluation of the Hilbert transform may be reduced to the evaluation of
the Fourier transform F , using the following identity that we formulate in the form of a lemma

Lemma 2.
F−1H[ρ](t) = −i sgn(t) F−1[ρ](t). (3.69)
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Proof. Let us first rewrite the Hilbert transform as the following convolution

H[ρ](ω) = P
∫
dν

π

ρ(ν)

ω − ν
=

1

π
ρ(ω) ∗ P

(
1

ω

)
, (3.70)

and apply F−1 on both sides. Using the convolution theorem11, we get

F−1H[ρ](t) =
1

π
2πF−1[ρ](t) · F−1

[
P
(
1

ω

)]
(t)︸ ︷︷ ︸

= 1
2i

sgn(t)

, (3.71)

which proves Eq. (3.69).

The right-hand side of Eq. (3.69) is analytically known, since the inverse Fourier transform of the
density of states was already calculated in Eq. (3.42) for the case of the hypercubic lattice with the
nearest neighbor hopping. Hence, H[ρ](ω) can be obtained by applying F on both sides of Eq. (3.69).
If we further take into account that J0(2t0t) from Eq. (3.42) is an even function of time, we get

H[ρ](ω) =
1

π

∫ ∞

0

dxJ0(2t0x)
d sin(xω), (3.72)

where d is the number of dimensions. The polaron band dispersion is then directly obtained from
Eqs. (3.65), (3.68), and (3.72), and it reads as

Ep,k = εk + α2ω2
0

∫ ∞

0

dxJ0(2t0x)
d sin (x(εk − ω0)) . (3.73)

As we already noted, the ground state energy Ep is then simply obtained by setting k = 0 in the above
expression. We see that Ep is thus a linear function with respect to α2, whose intercept is εk=0, while
its slope can be calculated accurately using the numerical scheme described in Appendix B.
In the two-dimensional case, it admits an analytical solution

E2D
p = −4t0 −

2α2ω2
0

π(4t0 + ω0)
K

(
4t0

4t0 + ω0

)
, (3.74)

where K(k) =
∫ π/2
0

dθ/
√

1− k2 sin2 θ is the complete elliptic integral of the first kind. In the case
d = 3, the integral in Eq. (3.73) does not admit a closed-form solution and thus requires numerical
calculation.

Remark 20. The polaron band dispersion Ep,k (and thus the ground state Ep) within the DMFT and
SCMA is obtained numerically, as we already explained in Sec. 2.1.

3.5.1.2 Numerical Results

Numerical results are presented in Fig. 3.8. We emphasize once again that the results from Sec. 2.1
demonstrate that DMFT predictions are practically identical to the numerically exact results. Fig-
ure 3.8i shows that the DMFT always gives the lowest ground-state energy predictions, with CE being
the closest approximation to DMFT. Following CE is the SCMA, while MA consistently exhibits
the largest deviation from DMFT. These results readily demonstrate how much improvement to the
one-shot MA is provided by including the self-consistency, and by employing the CE method.

11Whether factor 2π appears in the convolution theorem or not depends on the convention for the Fourier transform that
we use,
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Figure 3.8: Ground state energies, in the Holstein model, as a function of α2, for t0 = 1 and T = 0.

Furthermore, in the 1D case, we see that CE results for ω0 = 0.5 start to deviate more significantly
from the DMFT just around α = 2.5. Hence, the range of validity for the CE is similar as for the
spectral functions in Fig. 3.3. While a distinction between the predictions of different methods is
clearly seen for ω0 = 1, all three methods seem to be in agreement for ω0 = 0.2, in the whole range of
presented values of α. This is a consequence of the fact that the ground state energy correction is small,
as seen from Eqs. (3.66), (3.73) and (3.74) by fixing α and decreasing ω0. However, if we fix g = ω0α
and then decrease ω0, the ground state energy would change substantially (see, e.g., Eq. (3.66)), and
the CE would certainly give poorer results.

Similar trends are observed in higher dimensions as well; see Fig. 3.8ii. We see that CE always
outperforms the SCMA, despite the fact that its predictions of the energy are always a linear function
of α2. We note that it seems that the range of validity of all methods is increased in higher dimensions.
However, one should keep in mind that the hopping parameter is always taken to be unity, which
means that the bandwidth of the 2D and 3D systems are respectively 2 and 3 times larger than their
one-dimensional counterpart. Therefore, the correlation is weaker for a given coupling α.

3.5.2 Effective Mass

3.5.2.1 Analytical Results

Around |k| ≈ 0, the dispersion Ep,k assumes the following parabolic form

Ep,k ≈ const +
k2

2m∗ , (3.75)

where m∗ is the effective mass, which we now calculate.
In the 1D case, one obtains the analytical result for the effective mass using Eqs. (3.65) and (2.23)

from Part I, giving
m∗

m0

∣∣∣∣
1D,T=0

=
1

1− (2t0+ω0)α2√ω0

(4t0+ω0)3/2

, (3.76)

where m0 = 1/(2t0) is the band mass; see Eq. (2.6) and the text below. Results for the higher number
of dimensions are evaluated using Eq. (3.73). As for the ground state energy, the two-dimensional case
admits an analytic solution

m∗

m0

∣∣∣∣
2D,T=0

=
1

1− 2α2ω0

π(8t0+ω0)
E
(

4t0
4t0+ω0

) , (3.77)
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where E(k) =
∫ π/2
0

dθ
√
1− k2 sin2 θ is the complete elliptic integral of the second kind. Results in

the d-dimensional case are given by

m∗

m0

∣∣∣∣
T=0

=
1

1 + πα2ω2
0
dH[ρ]
dω

∣∣
ω=−2dt0−ω0

. (3.78)

In general case, this requires the numerical calculation of the derivative of H[ρ](ω), which for a given
ω0 and d is just a single number. From Eq. (3.78) we see that m0/m

∗ is a linear function of α2. This
linear behavior has to break down at one point, as m0/m

∗ cannot be negative. This happens for strong
interaction, where the CE is certainly not expected to be reliable.

Remark 21. The mass renormalization within the DMFT and SCMA is calculated numerically, using
Eq. (2.5), as we explained in Sec. 2.1.

3.5.2.2 Numerical Results

Results for the DMFT, CE, and SCMA effective mass, in different parameter regimes and for different
number of dimensions, are presented in Fig. 3.9.
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Figure 3.9: Effective mass results within the DMFT, CE, and SCMA for t0 = 1 and T = 0.
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In the one-dimensional case, we see that the CE always underestimates, while the SCMA overestimates
the results from the DMFT benchmark. Still, CE clearly outperforms the SCMA for ω0 = 1 and
ω0 = 0.5, while the results in the vicinity of the adiabatic limit (ω0 = 0.2) seem to be equally well
(poor) represented by both of these methods.

In the higher-dimensional case, we see that the CE is always a clearly better approximation than
the SCMA, while both of them overestimate the DMFT predictions. As for the ground state energy, we
emphasize again that the hopping parameter was set to 1. As a consequence, the system has a larger
bandwidth in the higher-dimensional case and, therefore, the correlations are weaker.

3.6 2D Spectral Functions
We now examine the CE spectral functions in a two-dimensional Holstein model, on a square lattice,
and compare them to the results from DMFT and SCMA. Results are presented in Fig. 3.10. We note
that in Figs. 3.10(a)–3.10(d), the phonon frequency ω0 = 0.2 is smaller, in the units of t0, than both of
the temperatures (T1 = 0.3 and T2 = 0.7) that we are considering. Similarly, the phonon frequency in
Figs. 3.10(i)–(l) is ω0 = 1, and is hence larger than both T1 = 0.3 and T2 = 0.7. Therefore, we focus
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on Figs. 3.10(e)–3.10(h) where T1 < ω0 < T2, while other regimes can be analyzed analogously. We
see that most of the spectral weight is concentrated in a smaller range of frequencies than in the 1D
case; see Figs. 3.3 and 3.10(e)–3.10(h). This is a consequence of the fact that the hopping parameter
is always set to unity, while the 2D bandwidth is twice as large in comparison to the bandwidth in
the 1D system. Regardless, spectral functions from Figs. 3.10(e)–3.10(g) exhibit qualitatively similar
behavior as results for the one-dimensional system in Figs. 3.3(a)–3.3(d). Here, all methods are in
agreement and predict that the quasiparticle peak dominates, while there is only a single tiny satellite
structure that is more pronounced at higher temperatures. However, it seems that the satellites are more
pronounced in the 1D spectral functions. A much more complicated multi-peak structure is predicted
by the DMFT in Fig. 3.9(h), where a large discrepancy can be observed in comparison to the CE and
SCMA results. A better agreement is observed for higher temperatures.

It is interesting to note that while the DMFT frequently gave sharper peaks than other methods in
1D (see Fig. 3.3), here the roles are reversed. This is a consequence of the strong Van Hove singularity
at the bottom of the band of a 1D system, which is highly relevant in our case when the concentration
of electrons is very low. On the other hand, the singularity in the 2D system is weaker and shifted to
the center of the band.

3.7 Supplementary Results in a Wide Range of Parameter Regimes

In previous sections, we presented spectral functions Ak(ω) and heat maps for ω0 = 0.5, and provided
a comprehensive analysis of these results. Without further discussion, here we show a large number
of results for ω0 = 1, ω0 = 0.2, as well as some additional results for ω0 = 0.5, that support our
conclusions.

1. Results for ω0 = 1:

• Fig. 3.11: A(ω) in the weak coupling regime for a wide range of temperatures and mo-
menta.

• Fig. 3.12: A(ω) in the weak, intermediate and strong electron-phonon coupling regimes
for k = 0 and k = π:

– Fig. 3.12i: k = 0 at T = 0.4 and T = 1.
– Fig. 3.12ii: k = π at T = 0.4 and T = 1.
– Fig. 3.12iii: k = 0, π at T = 2 and T = 5.

• Fig. 3.13: A(ω) in the weak, intermediate and strong electron-phonon coupling regimes
for k = π/3 and k = 2π/3:

– Fig. 3.13i: T = 0.4.
– Fig. 3.13ii: T = 1.
– Fig. 3.13iii: T = 2 and T = 5.

• Fig. 3.14: Heat maps

– Fig. 3.14i: T = 0.4.
– Fig. 3.14ii: T = 1.

2. Results for ω0 = 0.5:

• Fig. 3.13: A(ω) in the weak, intermediate, and strong electron-phonon coupling regimes
for k = π/3 and k = 2π/3:

– Fig. 3.15i: T = 0.3.
– Fig. 3.15ii: T = 0.7.
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3.7 - Supplementary Results in a Wide Range of Parameter Regimes

– Fig. 3.15iii: T = 2 and T = 5.

3. Results for ω0 = 0.2:

• Fig. 3.16: A(ω) in the weak, intermediate and strong coupling regimes for k = 0 and
k = π:

– Fig. 3.16i: k = 0 at T = 0.3 and T = 0.7.
– Fig. 3.16ii: k = π at T = 0.3 and T = 0.7.
– Fig. 3.16iii: k = 0, π at T = 2 and T = 5.

• Fig. 3.17: A(ω) in the weak, intermediate and strong coupling regimes for k = π/3 and
k = 2π/3:

– Fig. 3.17i: T = 0.3.
– Fig. 3.17ii: T = 0.7.
– Fig. 3.17iii: T = 2 and T = 5.

• Fig. 3.18: Heat maps:

– Fig. 3.18i: T = 0.3.
– Fig. 3.18ii: T = 0.7.
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Figure 3.15: Comparison of the CE, DMFT, and SCMA spectral functions in 1D for t0 = 1, ω0 = 0.5
and k = π/3, 2π/3.
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1
Revisiting Linear Response Theory

This chapter does not contain original results. We only give a short overview of the linear response the-
ory, which will be necessary for the calculation of optical conductivity and mobility in the subsequent
chapters. We mostly follow Refs. [54] and [121].

1.1 Brief Overview and Introduction of the Most Important Quan-
tities and Notation

The purpose of this section is to summarize the most general and most important results, without
giving any formal proofs, and to establish a notation that will be used henceforth.
Let the total Hamiltonian of our system be

Htot = H +H1(t), (1.1)

where H is the Holstein Hamiltonian, defined by Eq. (1.2) from Part I, while H1(t) is a perturbation
of the form

H1(t) = −A⃗ · F⃗ (t). (1.2)

Here, A⃗ is an observable (operator), while F⃗ is a classical field. Although this looks like a quite
restrictive form of perturbation, it actually captures a wide variety of relevant cases, such as the
introduction of electric or magnetic fields.

The change of expectation value (with respect to the case when there is no perturbation) of arbitrary
observable B, is given by

∆⟨B⟩(t) = Tr [ρ̄(t)B]− Tr [ρ̄0B] , (1.3)

where ρ̄(t) is the density matrix that corresponds to the total Hamiltonian, while ρ̄0 = e−βH/Tr
[
e−βH

]
is the density matrix that corresponds to the Holstein Hamiltonian. To calculate this, we first need to
find the time evolution of the density matrix ρ̄(t). As we will see, it is given by

ρ̄(t) = L(t, t0)ρ̄(t0), (1.4a)

L(t, t0) = e−itL0T̂t exp

{
−i
∫ t

t0

dt1e
it1L0L1(t1)e

−it1L0

}
eit0L0 , (1.4b)

where L0 and L1 are the Liouville operators, defined by their action on arbitrary operator G

L0G = [H,G], (1.5a)
L1(t)G = [H1(t), G]. (1.5b)
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1.2 - Time Evolution of the Density Matrix

Now, the linear response theory is obtained by approximating the time-ordered exponent in Eq. (1.4b)
as a linear function with respect to L1. In this case, if we assume that there was no perturbation in the
distant past t→ −∞, then ∆⟨B⟩(t) can be written as

∆⟨B⟩(t) =
∑
j

∫ t

−∞
dt1ϕBAj

(t− t1)Fj(t1), (1.6)

where
ϕBA(t) = iTr {B[A(−t), ρ̄0]} (1.7)

is the so-called response function. In addition, we can also define other important quantities such as:

• the relaxation function
ΦBA(t) = lim

ε→0+

∫ ∞

t

ϕBA(t1)e
−εt1dt1, (1.8)

whose physical interpretation will be clearer in Sec. 1.3.

• the generalized susceptibility χBA(ω). It is defined such that the following relation holds in the
Fourier space

∆⟨B⟩(ω) =
∑
j

Fj(ω)χBAj
(ω). (1.9)

For example, if we takeB to be the current operator,A to be the dipole electric moment operator,
and F to be the external electric field, then χBA(ω) represents the optical conductivity. It can be
related to the response function as follows

χBA(ω) =

∫ ∞

0

dtϕBA(t)e
iωt−εt. (1.10)

In the following sections, we will prove all of these relations and show many properties and different
ways to express ϕBA, ΦBA, and χBA.

1.2 Time Evolution of the Density Matrix
Here, we want to prove that the time evolution of the density matrix is given by Eq. (1.4). We start
from Eq. (1.4a), defining L(t, t0) as an evolution operator of the density matrix, and prove that it
can be expressed as in Eq. (1.4b). Equivalently, we can also define L(1)(t, t0) = eitL0L(t, t0)e−it0L0 ,
and prove that it is given by the time ordered exponential in (1.4b). To do so, let us first construct a
differential equation that L(1)(t, t0) satisfies by evaluating its first derivative with respect to t

L̇(1)(t, t0) = eitL0iL0L(t, t0) + eitL0L̇(t, t0)e−it0L0 . (1.11)

The quantity L̇(t, t0) can be rewritten using the Liouville equation as follows

−i(L0 + L1(t))L(t, t0)ρ(t0) = −i(L0 + L1(t))ρ(t) = ρ̇(t) = L̇(t, t0)ρ(t0), (1.12)

as it implies that
L̇(t, t0) = −i(L0 + L1(t))L(t, t0). (1.13)

Plugging this back into Eq. (1.11), we get

L̇(1)(t, t0) = −ieitL0L1(t)L(t, t0)e−it0L0 = −i eitL0L1(t)e
−itL0︸ ︷︷ ︸

≡L1(t,t)

eitL0L(t, t0)e−it0L0︸ ︷︷ ︸
=L(1)(t,t0)

= −iL1(t, t)L(1)(t, t0), (1.14)
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1.3 - Linear Response Approach

where we introduced L1(t, t) to make the formulas somewhat simpler. There is also an initial condition
L(1)(t0, t0) = 1. It is obvious that this differential equation can also be rewritten as an integral equation

L(1)(t, t0) = 1− i

∫ t

t0

dt1L1(t1, t1)L(1)(t1, t0). (1.15)

This is now easy to solve using an iterative procedure

L(1)(t, t0) =1− i

∫ t

t0

dt1L1(t1, t1)

[
1− i

∫ t1

t0

dt2L1(t2, t2)L(1)(t2, t0)

]
=1− i

∫ t

t0

dt1L1(t1, t1) + (−i)2
∫ t

t0

dt1

∫ t1

t0

dt2L1(t1, t1)L1(t2, t2)

+ · · ·+ (−i)n
∫ t

t0

dt1

∫ t1

t0

dt2· · ·
∫ tn−1

t0

dtnL1(t1, t1) . . . L1(tn, tn) + . . . (1.16)

From the identity∫ t

t0

dt1

∫ t1

t0

dt2· · ·
∫ tn−1

t0

dtnL1(t1, t1) . . . L1(tn, tn)

=
1

n!

∫ t

t0

dt1

∫ t

t0

dt2· · ·
∫ t

t0

dtnT̂t {L1(t1, t1) . . . L1(tn, tn)} , (1.17)

we see that the solution can be written as

L(1)(t, t0) = T̂t exp

{
−i
∫ t

t0

dt1L1(t1, t1)

}
. (1.18)

Using the definition L(1)(t, t0) = eitL0L(t, t0)e−it0L0 , we conclude that

L(t, t0) = e−itL0T̂t exp

{
−i
∫ t

t0

dt1e
it1L0L1(t1)e

−it1L0

}
eit0L0 , (1.19)

which completes the proof.

1.3 Linear Response Approach
Equation (1.18) is exact. In the case when the external field is not too strong, this equation can be
approximated as

L(1)(t, t0) = 1− i

∫ t

t0

dt1L1(t1, t1). (1.20)

This constitutes the so-called linear response approach.
Let us now deduce the consequences of this approximation if we additionally suppose that the

external field F (t) is nonzero only for t > t0. Hence,

ρ̄(t < t0) = ρ̄(t0) = ρ̄0 =
e−βH

Tr [e−βH ]
. (1.21)

From Eq. (1.19), and the fact that
L0ρ̄0 = 0, (1.22)
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1.3 - Linear Response Approach

we see that within the linear response theory, it follows that

ρ̄(t) = e−itL0

(
1− i

∫ t

t0

dt1e
it1L0L1(t1)e

−it1L0

)
ρ̄0

= ρ̄0 − i

∫ t

t0

dt1e
i(t1−t)L0L1(t1)ρ̄0

(1.5b)
= ρ̄0 − i

∫ t

t0

dt1e
i(t1−t)L0 [H1(t1), ρ̄0]

(1.2)
= ρ̄0 + i

∫ t

t0

dt1e
i(t1−t)L0 [A⃗, ρ̄0]F⃗ (t1). (1.23)

In the second term, L0 acts only on A⃗ since F⃗ is not an operator, while ρ̄0 commutes with L0. Hence,
to proceed, it is sufficient to derive the following

ei(t1−t)L0A =
∞∑
n=0

(i(t1 − t))n

n!
Ln0A

(1.5a)
=

∞∑
n=0

1

n!
[i(t1 − t)H, [i(t1 − t)H, [. . . [i(t1 − t)H,A] . . . ]]]

= ei(t1−t)HAe−i(t1−t)H

= A(t1 − t), (1.24)

where we used the Baker–Campbell–Hausdorff identity in the second-to-last line. Plugging this back
into Eq. (1.23) and setting t0 → −∞, we finally obtain

ρ̄(t) = ρ̄0 + i

∫ t

−∞
dt1[A⃗(t1 − t), ρ̄0]F⃗ (t1). (1.25)

Hence, the response of arbitrary observable B reads as

∆⟨B⟩(t) = Tr [ρ̄(t)B]− Tr [ρ̄0B] = i

∫ t

−∞
dt1Tr

{
[A⃗(t1 − t), ρ̄0]B

}
F⃗ (t1). (1.26)

This can also be rewritten as

∆⟨B⟩(t) = i

∫ t

−∞
dt1
∑
j

Tr
{
[A⃗j(t1 − t), ρ̄0]B

}
F⃗j(t1) =

∑
j

∫ t

−∞
dt1ϕBAj

(t− t1)Fj(t1),

(1.27)
where we derived the so-called response function ϕBA(t) as

ϕBA(t) = iTr {B[A(−t), ρ̄0]} . (1.28)

As we see, the response function illustrates how the system reacts to the external perturbation, but
is independent of the external field F⃗ (t). Nevertheless, we can try out different choices of F⃗ (t) and
see how the system reacts. One possibility is to use constant external field Fj(t) (equal to unity) in
the range t ∈ (−∞, 0) and then suddenly switch it off. In this case, Eq. (1.27), using the substitution
x = t− t1, implies that

∆⟨B⟩(t) =
∑
j

∫ ∞

0

ϕBAj
(x)θ(x− t)dx

if t > 0
=

∑
j

∫ ∞

t

ϕBAj
(x)dx, (1.29)
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1.4 - Properties of Response and Relaxation Functions

where θ is the Heaviside step function. This motivates the introduction of a new quantity1

ΦBA(t) = lim
ε→0+

∫ ∞

t

ϕBA(t1)e
−εt1dt1, (1.30)

which is called the relaxation function.

1.4 Properties of Response and Relaxation Functions

1.4.1 Properties of ϕBA(t)

Cyclic Properties

Using the cyclic property of the trace

Tr {X[Y, Z]} = Tr {Z[X, Y ]} = Tr {Y [Z,X]} , (1.31)

we immediately see that ϕBA(t) can be written in a few different ways

ϕBA(t) = iTr {B[A(−t), ρ̄0]}
= iTr {ρ̄0[B,A(−t)]}
= iTr {A(−t)[ρ̄0, B]} .

(1.32a)
(1.32b)
(1.32c)

Furthermore, using the fact that ρ̄0 commutes with H0, it follows that

ϕBA(t) = iTr {B[A(−t), ρ̄0]}
= iTr

{
Be−itH [A, ρ̄0]e

itH
}

= iTr
{
eitHBe−itH [A, ρ̄0]

}
= iTr {B(t)[A, ρ̄0]} . (1.33)

Thus, applying Eq. (1.31) once again we get

ϕBA(t) = iTr {B(t)[A, ρ̄0]}
= iTr {ρ̄0[B(t), A]}
= iTr {A[ρ̄0, B(t)]} .

(1.34a)
(1.34b)
(1.34c)

Symmetry Properties

The response function ϕBA(t) satisfies the following properties:

ϕBA(t)
∗ = ϕBA(t),

ϕBA(t) = −ϕAB(−t).
(1.35a)
(1.35b)

These can be proved by using the fact that

• [X, Y ]† = −[X†, Y †]

• A† = A and B† = B

• A(−t)† = A(−t)
1Here, we also include the regularization parameter ε.
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1.4 - Properties of Response and Relaxation Functions

Hence, it follows that

ϕBA(t)
∗ = (iTr {B[A(−t), ρ̄0]})∗ = −iTr

{
[A(−t), ρ̄0]†B†}

= iTr {B[A(−t), ρ̄0]} = ϕBA(t), (1.36)

and
ϕBA(t)

(1.34c)
= iTr {A[ρ̄0, B(t)]} = −iTr {A[B(t), ρ̄0]} (1.32a)

= −ϕAB(−t). (1.37)

Furthermore, the so-called Onsager relation trivially follows from the time-reversal symmetry

ϕBA(t) = εAεBϕAB(t). (1.38)

Here εA and εB are the parity signs of observables A and B with respect to time reversal.

Consequences of the Kubo Identity

As a consequence of Eqs. (E.2) and (E.4), that we derived in Appendix E, the response function can
also be written as2

ϕBA(t) = ⟨ ˜̇AB(t)⟩0 = −⟨ ˜̇B(t)A⟩0 = −⟨ÃḂ(t)⟩0, (1.39)

where the quantities with a tilde are defined as

G̃ = G(iνn = 0) =

∫ β

0

dτG(−iτ). (1.40)

The first equality in Eq. (1.39) is proven as follows

ϕBA(t)
(1.34a)
= iTr {B(t)[A, ρ̄0]} (E.2)

= Tr
{
B(t)ρ̄0

˜̇A} = Tr
{˜̇AB(t)ρ̄0

}
= ⟨ ˜̇AB(t)⟩0. (1.41)

The second one is completely analogous

ϕBA(t)
(1.34c)
= −iTr {A[B(t), ρ̄0]} (E.2)

= −Tr
{˜̇B(t)Aρ̄0

}
= −⟨ ˜̇B(t)A⟩0, (1.42)

while the third one is derived as a consequence of the second one

ϕBA(t) = −⟨ ˜̇B(t)A⟩0 (E.4)
= −⟨ÃḂ(t)⟩0. (1.43)

1.4.2 Properties of ΦBA(t)

Basic Properties

From the definition of the relaxation function in Eq. (1.30) we can immediately see that it satisfies

lim
t→∞

ΦBA(t) = 0,

Φ̇BA(t) = −ϕBA(t)e−εt.

(1.44a)

(1.44b)

Furthermore, starting from Eq. (1.30), ΦBA(t) can also be expressed as

ΦBA(t) =

∫ ∞

t

dt1ϕBA(t1)e
−εt1 (1.39)

= −
∫ ∞

t

dt1⟨ÃḂ(t)⟩0e−εt1 . (1.45)

Using the partial integration with u = e−εt1 and dv = ⟨ÃḂ(t)⟩0, we obtain

ΦBA(t) = ⟨ÃB(t)⟩0. (1.46)
2The expectation value is defined as ⟨G⟩0 = Tr[ρ̄0G].
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1.5 - Generalized Susceptibility

Symmetry Properties

The relaxation function ϕBA(t) satisfies the following properties:

ΦBA(t)
∗ = ΦBA(t),

ΦBA(−t) = ΦAB(t).

(1.47a)
(1.47b)

The first one of these is a direct consequence of Eq. (1.35a), and the definition of relaxation func-
tion (1.30). The second one can be proved as follows

ΦBA(−t) (1.46)
= ⟨ÃB(−t)⟩0 = ⟨Ã(t)B⟩0 (E.4)

= ⟨B̃A(t)⟩0 (1.46)
= ΦAB(t). (1.48)

In addition, ΦBA(t) also satisfies the Onsager relation, as a consequence of time-inversion symmetry

ΦBA(t) = εAεBΦAB(t), (1.49)

where εA and εB are the parity signs of observables A and B with respect to time-reversal.

Fourier Properties

There is a direct consequence of these symmetry properties on ΦBA(ω) in the Fourier space

ΦBA(ω) = ΦAB(ω)
∗. (1.50)

This is easily proved as follows:

ΦBA(ω) =

∫ ∞

−∞
dteiωtΦBA(t)

t→−t
=

∫ ∞

−∞
dte−iωtΦBA(−t) (1.47b)

=

∫ ∞

−∞
dte−iωtΦAB(t)

(1.47a)
=

[∫ ∞

−∞
dteiωtΦAB(t)

]∗
= ΦAB(ω)

∗. (1.51)

1.5 Generalized Susceptibility

Definition and Relation to Response Function
Using the substitution x = t− t1 in Eq. (1.27)

∆⟨B⟩(t) =
∑
j

∫ ∞

0

dxϕBAj
(x)Fj(t− x) =

∑
j

∫ ∞

−∞
dxθ(x)ϕBAj

(x)Fj(t− x), (1.52)

and performing a Fourier transform on this convolution integral, leads us to

∆⟨B⟩(ω) =
∑
j

Fj(ω)χBAj
(ω), (1.53)

where χBAj
(ω) is the generalized susceptibility, which reads as

χBAj
(ω) =

∫ ∞

−∞
dteiωtθ(t)ϕBAj

(t) =

∫ ∞

0

dteiωtϕBAj
(t). (1.54)
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Properties of χBA(ω)
The susceptibility χBA(ω) satisfies the following properties:

χBA(ω)
∗ = χBA(−ω),

χBA(ω) = ΦBA(t = 0) + iω

∫ ∞

0

dtΦBA(t)e
iωt,

χBA(ω = 0) = ΦBA(t = 0) = ⟨ÃB⟩0 = ⟨B̃A⟩0.

(1.55a)

(1.55b)

(1.55c)

The first one of these is easily proved

χBA(ω)
∗ (1.54)

=

[∫ ∞

0

dteiωtϕBA(t)

]∗
(1.35a)
=

∫ ∞

0

dte−iωtϕBA(t) = χBA(−ω). (1.56)

Equation (1.55b) is proved by introducing the regularization parameter in Eq. (1.54)

χBA(ω) =

∫ ∞

0

dtϕBA(t)e
iωt−εt, (1.57)

and using the partial integration with u = eiωt and dv = ϕBA(t)e
−εt. Since v = −ΦBA(t), as a

consequence of Eq. (1.44b), we obtain

χBA(ω) = −ΦBA(t)e
iωt
∣∣∣∞
0
+ iω

∫ ∞

0

dtΦBA(t)e
iωt (1.44a)

= ΦBA(0) + iω

∫ ∞

0

dtΦBA(t)e
iωt, (1.58)

which completes the proof of Eq. (1.55b). Before we proceed with our proof of Eq. (1.55c), let us note
that the quantity

χ̃BA(ω) =

∫ ∞

0

dtΦBA(t)e
iωt (1.55b)

=
χBA(ω)− ΦBA(t = 0)

iω

(1.55b)
=

χBA(ω)− χBA(ω = 0)

iω
, (1.59)

is often called the reduced susceptibility.
The only thing that remains is to show that Eq. (1.55c) is valid. This can be done as follows

χBA(ω = 0)
(1.55b)
= ΦBA(t = 0)

(1.46)
= ⟨ÃB(t = 0)⟩0 = ⟨ÃB⟩0 (E.4)

= ⟨B̃A⟩0. (1.60)
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2
Optical Conductivity from Linear Response Theory

Here, we will consider one of the applications of the formalism that we introduced in the last chapter.
This chapter is also a review, and it does not contain original results. We again follow Refs. [54]
and [121].

2.1 Basic Definitions
For us, the most important application of linear response theory is the ability to calculate the optical
conductivity. To accomplish this, Ohm’s law

⟨jα⟩(ω) =
∑
γ

σαγ(ω)Eγ(ω) (2.1)

tells us that we should introduce the electric field Eγ(ω) and examine the response of the current
density operator1 ⟨jα⟩(ω). Theoretically, in order to incorporate the electric field, we need to add a
perturbation to the Holstein Hamiltonian of the form

H1(t) = −P⃗ · E⃗(t), (2.2)

where P⃗ is the electric dipole moment. This has the same form as Eq. (1.2), if we set A⃗ = P⃗
and F⃗ (t) = E⃗(t). Hence, we can use all the results from the previous chapter. In particular, since
the conductivity is a generalized susceptibility (see Eq. (1.53)), we can immediately deduce many
different ways to express it

σαγ(ω) = χjαPγ
(ω)

(1.54)
=

∫ ∞

0

dteiωtϕjαPγ
(t)

(1.39)
=

∫ ∞

0

dteiωt⟨ ˜̇P γjα(t)⟩0
(C.29)
= V

∫ ∞

0

dteiωt⟨j̃γjα(t)⟩0 (1.46)
= V

∫ ∞

0

dteiωtΦjαjγ (t). (2.3)

One immediate consequence of the previous line and the Onsager relation in Eq. (1.49) is the well-
known fact that the conductivity tensor is symmetric σαγ(ω) = σγα(ω), but it can also be used in
conjunction with Eq. (1.59) to derive the following relation

σαγ(ω) = V
χjαjγ(ω)− χjαjγ(ω = 0)

iω
, (2.4)

The susceptibility χjαjγ(ω) from the last line can be connected to the current-current correlation
function as follows

χjαjγ(ω)
(1.54)
=

∫ ∞

0

dtϕjαjγ(ω)e
iωt (1.34b)

= i

∫ ∞

0

dteiωt⟨[jα(t), jγ]⟩0. (2.5)

1Indices α and γ denote the components of vectors and tensors.
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2.2 Different Ways to Relate Optical Conductivity and Current-
Current Correlation Functions

In the previous section, Eqs. (2.4) and (2.5) demonstrated how the optical conductivity can be related
to the current-current correlation function. Here, we will show some various additional ways how this
can be done. We note that we will here be focusing on the real part of the optical conductivity. This
will be very helpful for our subsequent numerical implementations.

2.2.1 Expressions on a Real-Frequency Axis
Let us start from the result that we already obtained in Eq. (2.4). As a consequence of Eq. (1.55a),
χjαjγ(ω = 0)/(iω) is purely imaginary. Hence

Reσαγ(ω) = V · Re
(
χjαjγ(ω)

iω

)
(2.5)
=

V

ω
Re

∫ ∞

0

dteiωt⟨[jα(t), jγ]⟩0. (2.6)

Remark 22. As a consequence of Eq. (1.55a), we see that Reχjαjγ(ω) is symmetric while Imχjαjγ(ω)

is antisymmetric function of ω. Hence, Reσαγ(ω) is a symmetric function of ω, as seen from the
expression above.

Another interesting expression for Reσαγ(ω) can be derived by taking the real part of both
sides of Eq. (2.3). The relaxation function Φjαjγ (t) is an even, real function, as a consequence of
Eqs. (1.47a), (1.47b), and (1.49). Hence, Re affects only the exponential term eiωt, which as a result
also becomes real and even function. Hence

Reσαγ(ω) =
V

2
Re

∫ ∞

−∞
dteiωtΦjαjγ (t)

(1.46)
=

V

2
Re

∫ ∞

−∞
dteiωt⟨j̃γjα(t)⟩0

=
V

2
Re

∫ ∞

−∞
dteiωt

∫ β

0

dτ⟨jγ(−iτ)jα(t)⟩0

=
V

2
Re

∫ ∞

−∞
dteiωt

∫ β

0

dτ⟨jγjα(t+ iτ)⟩0

(E.7)
=

V

2
Re

∫ ∞

−∞
dteiωt

∫ β

0

dτ

∫ ∞

−∞

dω′

2π
Jjγjα(ω

′)e−iω
′(t+iτ)

=
V

2
ReJjγjα(ω)

eβω − 1

ω
= V

1− e−βω

2ω
ReJjγjα(ω)e

βω (2.7)

Using the inverse Fourier transform of Eq. (E.9) leads us to

Reσαγ(ω) = V
1− e−βω

2ω
Re

∫ ∞

−∞
dteiωt⟨jα(t)jγ⟩0. (2.8)

Analogously, if we returned to Eq. (2.7), and used Eq. (E.8), we would obtain:

Reσαγ(ω) = V
eβω − 1

2ω
Re

∫ ∞

−∞
dteiωt⟨jγjα(t)⟩0. (2.9)

Remark 23. 1. Since we already proved that conductivity is a symmetric tensor σαγ = σγα, this
implies that we can interchange α ↔ γ in both Eqs. (2.8) and (2.9).

2. Due to invariance under time translations we can use ⟨jα(t)jγ⟩0 = ⟨jαjγ(−t)⟩0 and ⟨jγjα(t)⟩0 =
⟨jγ(−t)jα⟩0 in both Eqs. (2.8) and (2.9).
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3. Due to time-reversal symmetry, it holds that ⟨jα(t)jγ⟩0 = ⟨jα(−t)jγ⟩∗0. Hence, using the substi-
tution t→ −t, we get∫ ∞

−∞
dteiωt⟨jα(t)jγ⟩0 =

∫ ∞

−∞
dte−iωt⟨jα(−t)jγ⟩0 =

[∫ ∞

−∞
dteiωt⟨jα(t)jγ⟩0

]∗
, (2.10)

we see that the expression in the previous line is real. This is the same integral, as in Eq. (2.9).
Therefore, we do not need Re on the right-hand side of Eq. (2.9), and we can remove it. An
analogous result holds also for Eq. (2.8). As a result, we obtain

Reσαγ(ω) = V
1− e−βω

2ω

∫ ∞

−∞
dteiωt⟨jα(t)jγ⟩0,

Reσαγ(ω) = V
eβω − 1

2ω

∫ ∞

−∞
dteiωt⟨jγjα(t)⟩0.

(2.11a)

(2.11b)

A more symmetric expression for Reσαγ(ω) can be obtained as follows

Reσαγ(ω)
(2.11a)
= V

1− e−βω

2ω

∫ ∞

−∞
dteiωt [⟨jα(t)jγ⟩0 + ⟨jγjα(t)⟩0]

−V 1− e−βω

2ω

∫ ∞

−∞
dteiωt⟨jγjα(t)⟩0

(2.11b)
= V

1− e−βω

2ω

∫ ∞

−∞
dteiωt [⟨jα(t)jγ⟩0 + ⟨jγjα(t)⟩0]−

1− e−βω

eβω − 1
Reσαγ(ω), (2.12)

giving

Reσαγ(ω) = V
tanh

(
βω
2

)
2ω

∫ ∞

−∞
dteiωt [⟨jα(t)jγ⟩0 + ⟨jγjα(t)⟩0] . (2.13)

Furthermore, the terms in the square brackets are complex conjugates of each other. Therefore:

Reσαγ(ω) = V
tanh

(
βω
2

)
ω

∫ ∞

−∞
dteiωtRe⟨jα(t)jγ⟩0

= V
tanh

(
βω
2

)
ω

∫ ∞

−∞
dt cos(ωt)Re⟨jα(t)jγ⟩0.

(2.14a)

(2.14b)

Some further insight can be gained by inspecting the spectral representation of the current-current
correlation function (see Appendix E)

Jjαjγ (ω)
(E.8)
=

∫ ∞

−∞
dteiωt⟨jαjγ(t)⟩0 (E.9)

= e−βω
∫ ∞

−∞
dteiωt⟨jγ(t)jα⟩0 = e−βω

∫ ∞

−∞
dteiωt⟨jαjγ(−t)⟩0,

(2.15)

where we, in the last equality, used the invariance under time reversal. If we now use a substitution
t→ −t, we get

Jjαjγ (ω) = e−βωJjαjγ (−ω). (2.16)

This is just one of the possible formulations of the fluctuation-dissipation theorem. It enables us to
derive yet another form of the optical conductivity
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Reσαγ(ω)
(2.11b)
= V

eβω − 1

2ω

∫ ∞

−∞
dteiωt⟨jγjα(t)⟩0 (E.7)

= V
eβω − 1

2ω
Jjγjα(ω)

(2.16)
=

V

2ω

[
Jjγjα(−ω)− Jjγjα(ω)

]
=

V

2ω

∫ ∞

−∞
dt
[
e−iωt⟨jγjα(t)⟩0 − eiωt⟨jγjα(t)⟩0

]
(2.17)

Using now the invariance under time reversal and substitution t→ −t in the first term, we obtain

Reσαγ(ω) =
V

2ω

∫ ∞

−∞
dteiωt [⟨jα(t)jγ⟩0 − ⟨jγjα(t)⟩0] . (2.18)

Let us note that although there is ω in the denominator, the DC conductivity can nevertheless be
calculated directly, using Eq. (2.11a) and the fact that limω→0(1− e−βω)/ω = β

Reσαγ(ω = 0) =
V β

2

∫ ∞

−∞
dt⟨jα(t)jγ⟩0. (2.19)

Up to now, we only showed how to calculate the conductivity from the current-current correlation
function. However, we can also perform the calculation in the opposite direction. Using the inverse
Fourier transform in Eq. (2.11a), we obtain

⟨jα(t)jγ⟩0 =
∫ ∞

−∞

dω

2πV
e−iωt

2ω

1− e−βω
Reσαγ(ω). (2.20)

2.2.2 Expressions on the Imaginary Axis
Using the substitution t = −iτ in Eq. (2.20), we get the current-current correlation function in
imaginary time

⟨jα(−iτ)jγ⟩0 =
∫ ∞

−∞

dω

2πV
e−ωτ

2ω

1− e−βω
Reσαγ(ω). (2.21)

The Fourier transform to Matsubara frequency space can also be easily carried out

⟨jα(iνn)jγ⟩0 =
∫ ∞

−∞

dω

2πV

2ω

1− e−βω
Reσαγ(ω)

∫ β

0

dτeiνnτe−ωτ =

∫ ∞

−∞

dω

πV

ω

ω − iνn
Reσαγ(ω)

(2.22a)

=

∫ ∞

−∞

dω

πV

ω2

ω2 + ν2n
Reσαγ(ω) +

�������������:0

iνn

∫ ∞

−∞

dω

πV

ωReσαγ(ω)

ω2 + ν2n
, (2.22b)

where we used that the second term in the last line is zero because the subintegral function is odd with
respect to ω. Therefore

⟨jα(iνn)jγ⟩0 =
∫ ∞

−∞

dω

πV

ω2

ω2 + ν2n
Reσαγ(ω). (2.23)

At the end of this section, we present another important identity

χjαjγ(iνn) =

∫ ∞

−∞

dω

π

Imχjαjγ(ω)

ω − iνn
=

∫ ∞

−∞

dω

πV

ωReσαγ(ω)

ω − iνn
= ⟨jα(iνn)jγ⟩0. (2.24)

The first equality is trivial, as the right-hand side is simply the Hilbert transform. The second equality
is a direct consequence of

Imχjαjγ(ω)
(2.5)
= Re

∫ ∞

0

dteiωt⟨[jα(t), jγ]⟩0 (2.6)
=

ω

V
Reσαγ(ω). (2.25)

The third equality is also trivial, as seen from Eq. (2.22a).
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2.3 Optical Sum Rule

2.3.1 Optical Sum Rule in General
The previous sections demonstrated how the optical conductivity can be expressed using the current-
current correlation functions. However, the calculation of both the current-current correlation functions
and optical conductivity in practice can be very complex. This is why it is very important to have some
results that can be used to crosscheck that our numerical implementation is in fact stable. One such
result is the optical sum rule which states that the area under the curve Reσαγ(ω) is exactly determined.
In the following text, we derive the optical sum rule∫ ∞

−∞
dωReσαα(ω)

(2.18)
= V

∫ ∞

−∞

dω

2ω

∫ ∞

−∞
dteiωt [⟨jα(t)jα⟩0 − ⟨jαjα(t)⟩0] . (2.26)

Let us now expand the right-hand side using the Lehmann spectral representation as follows∫ ∞

−∞
dωReσαα(ω) = V

∫ ∞

−∞

dω

2ω

∫ ∞

−∞
dteiωt

1

Z
∑
n

{
⟨n|e−βHeiHtjα1e−iHtjα|n⟩

− ⟨n|e−βHjα1eiHtjαe−iHt|n⟩
}
, (2.27)

where |n⟩ is the energy basis, while 1 is an identity operator which we express as 1 =
∑

m |m⟩⟨m|.
Hence∫ ∞

−∞
dωReσαα(ω) =

V

Z
∑
n,m

∫ ∞

−∞

dω

2ω

∫ ∞

−∞
dteiωte−βEneiEnte−iEmt⟨n|jα|m⟩⟨m|jα|n⟩ (2.28)

− V

Z
∑
n,m

∫ ∞

−∞

dω

2ω

∫ ∞

−∞
dteiωte−βEne−iEnteiEmt⟨n|jα|m⟩⟨m|jα|n⟩. (2.29)

In the bottom line, we switch n↔ m and obtain∫ ∞

−∞
dωReσαα(ω) =

V

Z
∑
n,m

∫ ∞

−∞

dω

2ω
|⟨n|jα|m⟩|2

(
e−βEn − e−βEm

) ∫ ∞

−∞
dtei(En−Em+ω)t

=
V

Z
∑
n,m

∫ ∞

−∞

dω

2ω
|⟨n|jα|m⟩|2

(
e−βEn − e−βEm

)
2πδ (En − Em + ω)

=
πV

Z
∑
n,m

|⟨n|jα|m⟩|2
(
e−βEn − e−βEm

) 1

Em − En
. (2.30)

The matrix element can be rewritten using the definition of the current density operator in Eq. (C.29)
as follows

V ⟨n|jα|m⟩ = −i⟨n|[Pα, H]|m⟩ = −i⟨n|PαH −HPα|m⟩ = −i(Em − En)⟨n|Pα|m⟩, (2.31)

where P is the polarization operator. Plugging this back into Eq. (2.30), we get∫ ∞

−∞
dωReσαα(ω) =

−iπ
Z
∑
n,m

⟨n|Pα|m⟩⟨m|jα|n⟩
(
e−βEn − e−βEm

)
=
−iπ
Z
∑
n

e−βEn⟨n|Pα
∑
m

|m⟩⟨m|jα|n⟩+
iπ

Z
∑
m

e−βEm⟨m|jα
∑
n

|n⟩⟨n|Pα|m⟩

=− iπ

Z
∑
n

e−βEn⟨n|Pαjα|n⟩+
iπ

Z
∑
n

e−βEn⟨n|jαPα|n⟩ (2.32)
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Therefore, we obtain ∫ ∞

−∞
dωReσαα(ω) = −iπ⟨[Pα, jα]⟩0. (2.33)

2.3.2 Optical Sum Rule for the Holstien Model
In the Holstein model, the polarization operator commutes with the interacting part of the Hamiltonian,
so the current density operator is given by Eq. (C.37). Hence, the optical sum rule can be written as∫ ∞

−∞
dωReσαα(ω) =

t0π

V

∑
r1,r2,δ

δαr2α

〈[
c†r2cr2 , c

†
r1+δcr1

]〉
0
=
t0π

V

∑
r,δ

δ2αc
†
r+δcr, (2.34)

where δ goes over the nearest neighbor vectors. In the case of a 1D Holstein model, we can substitute
δ2α → 1 and use the fact that the kinetic part of the Hamiltonian can be written as in Eq. (C.35), to
obtain ∫ ∞

−∞
dωReσαα(ω) = − π

V
⟨Hkin⟩0 = 2

∫ ∞

0

dωReσαα(ω). (2.35)

2.4 Diagrammatic Approach to Optical Conductivity

2.4.1 General Theory
Up to now, we have not taken into account the q dependence of the optical conductivity. This general-
ization to arbitrary q is actually quite straightforward [1, 68]

σαγ(q, ω) =
χjαjγ(q, ω)− χjαjγ(q, ω = 0)

iω
, (2.36)

where χjαjγ(q, ω) is given by

χjαjγ(q, ω) = χjαjγ(q, iνn → ω + i0+),

χjαjγ(q, iνn) =

∫ β

0

dτeiνnτ
1

N
⟨T̂τjα(q,−iτ)jβ(−q, 0)⟩.

(2.37a)

(2.37b)

Remark 24. 1. A well-known result from many-body physics is that analytic continuation iνn →
ω + i0+ of the time-ordered correlation function in the Matsubara space gives retarded correla-
tion function in real frequency space. Hence, we see that Eqs. (2.37) and (2.5) are completely
to each other.

2. We included the volume V from Eq. (2.4) into the definition of χjαjγ(q, ω). This way, some
equations will be a bit simpler, but most importantly the Feynman rules for the diagrammatic
expansion of χjαjγ(q, ω) will be the same as we formulated in Sec. 2.1.

3. Since we set the volume of the unit cell to be unity, we can interchange V ↔ N .

4. One might wonder how does N appear in the denominator of Eq. (2.37b), if we absorbed V
from Eq. (2.4) into the definition of χjαjγ(q, ω). The reason for this is that j(q = 0) and the
current density operator that we used in Secs. 2.1 and 2.2 are related as j(q = 0) = Nj.
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(a) (b) (c)

(d) (e)

Figure 2.1: Feynman diagrams for χjαjγ(q, ω).

Although we are mainly interested in the optical conductivity, the diagrammatic expansion is most
easily formulated for χjαjγ(q, ω). The first few diagrams are shown in Fig. 2.1. These are calculated
using the Feynman rules we provided in Sec. 2.1 of Part I, with an additional rule that the empty circles
at the beginning and the end of the diagrams represent free vertices γα(p+ q,p) and γα(p,p+ q);
see Fig. 2.2.

The exact mathematical form of these quantities depends on the definition of the current density
operator. It can be easily seen that γα(p,p+ q) is different for the system in the continuum and on
a lattice. Furthermore, even if we examine one particular lattice, there is freedom to choose between
different, but physically equivalent expressions for the current density operator, and hence for free
vertices as well. All of these are derived in Appendix C.

Figure 2.2: Feynman diagrams for free vertices γα(p+ q,p) and γα(p,p+ q)

Let us now go back to Fig. 2.1, to introduce some useful terminology and provide a physical inter-
pretation that will enable us to intuitively understand the significance of certain diagrams. The diagram
in Fig. 2.1(a) is the so-called bubble term, while everything else represents the vertex corrections [1].
The bubble term represents the independent propagation of the electron-hole pair. Both the electron
and hole are dressed, as seen from the fact that we use the interacting Green’s function in Fig. 2.1(a),
but the interaction between them is completely neglected. These are included in higher order terms,
such as in Fig. 2.1(b). Actually, there is a whole class of terms analogous to Fig. 2.1(b) known as
the ladder diagrams. The next term in this class is shown in Fig. 2.1(e), while all the other terms
are obtained by adding vertical phonon lines that connect particle and hole propagators. In systems
such as ours, with a low density of charge carriers, it is often expected that these diagrams will give
dominant contributions. This is intuitively clear, as the scarcity of charge carriers causes the electron’s
repeated interactions with the same hole. There are also other classes of diagrams. One example is
shown in Fig. 2.1(c), while its higher-order counterparts are obtained by adding additional phonon
lines and fermion bubbles in a cascade. Actually, it turns out that, in the Holstein model, this entire
class of diagrams is not contributing for the calculation of mobility. This will be proved in Chapter 5.

A reliable estimate of the vertex corrections is known to be a notoriously difficult task. In fact, their
contribution in most systems is largely unknown. One of the goals of this thesis is to investigate the
contribution of vertex corrections in one particular system - the Holstein model. This will be postponed
until Chapters 5 and 6. Here, we only briefly overview some aspects of the diagrammatic approach.
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Figure 2.3: Alternative way to write Feynman diagrams for χµν

The Feynman diagrams from Fig. 2.1 can also be written symbolically as in Fig. 2.3, where the
shaded part represents the so-called renormalized vertex function Γγ(p, iωn,p+ q, iωn+ iνm). Using
this new quantity, χjαjγ(q, ω) can now be written as

χjαjγ(q, iνm) ≡ − 1

Nβ

∑
p,iωn

[
γα(p+ q,p)G(p+ q, iωn + iνm)

× Γγ(p, iωn,p+ q, iωn + iνm)G(p, iωn)
]
. (2.38)

Equation (2.38) can also be taken as a definition of the renormalized vertex Γγ . We see that renor-
malized vertex Γγ now fully takes into account both the bubble part and the vertex corrections. Thus,
finding Γγ and interacting Green’s functions is sufficient the calculation of the current-current correla-
tion function (i.e. optical conductivity), and hence represents the central quantity of our study.

Although it looks that the introduction of Γγ was unnecessary, the renormalized vertex function
will enable us to easily formulate the so-called Ward identities. This identity is a consequence of
the conservation of electric charge, and as such it establishes a relationship between the renormalized
vertex function Γγ and the self-energy Σ. Therefore, for a given approximation in which Σ is calculated,
the Ward identity dictates the vertex corrections that should be included in Γγ , in order not to violate
the conservation of electric charge.

2.4.2 Bubble Approximation
The bubble term is completely determined by the one-particle properties of Green’s functions. Here,
we show how this term is calculated if the spectral function is known.

Restricting ourselves to the q = 0 component, the direct application of Feynman rules imply that

χjαjα(q = 0, iνm) = = − 1

Nβ

∑
k,iωn

vkαGk(iνm + iωn)Gk(iωn)vkα , (2.39)

where vkα is the α-th component of the velocity vk = ∇kεk. Using the spectral representation of the
Green’s function

Gk(iωn) =

∫ ∞

−∞
dω′ Ak(ω

′)

iωn − ω′ , (2.40)

we see that χjαjα(q = 0, iνm) can be written as

χjαjα(q = 0, iνm) = − 1

Nβ

∑
k

v2kα

∫ ∞

−∞
dω′
∫ ∞

−∞
dω′′Ak(ω

′)Ak(ω
′′)

×
∑
iωn

1

iωn − ω′
1

iωn + iνm − ω′′ . (2.41)
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The sum over Matsubara frequencies is standardly calculated as

1

β

∑
iωn

F (iωn) =
∑

poles of F (z)

Res [f(z)F (z)] , (2.42)

where f(z) is the Fermi-Dirac function

f(z) =
1

eβz + 1
. (2.43)

Plugging this back into Eq. (2.41), we obtain

χjαjα(q = 0, iνm) = − 1

N

∑
k

v2kα

∫ ∞

−∞
dω′
∫ ∞

−∞
dω′′Ak(ω

′)Ak(ω
′′)

×
[

f(ω′)

ω′ + iνm − ω′′ +
f(ω′′ − iνm)

ω′′ − ω′ − iνm

]
(2.44)

The second term in the square brackets can be simplified

f(ω′′ − iνm) =
1

eβ(ω′′−iνm) + 1
=

1

eβω′′ + 1
= f(ω′′), (2.45)

since iνm is the bosonic Matsubara frequency. Now, Eq. (2.44), after analytic continuation iνm →
ω + i0+, becomes

χjαjα(q = 0, ω) = − 1

N

∑
k

v2kα

∫ ∞

−∞
dω′
∫ ∞

−∞
dω′′Ak(ω

′)Ak(ω
′′)

×
[

f(ω′)

ω′ − ω′′ + ω + i0+
− f(ω′′)

ω′ − ω′′ + ω + i0+

]
. (2.46)

For the calculation of Reσαα, we only need the imaginary part of χjαjα(q = 0, ω), as implied by
Eq. (2.6). The easiest way to calculate this is to use the Plemelj-Sokhotski theorem

1

ω′ − ω′′ + ω + i0+
= P 1

ω′ − ω′′ + ω
− iπδ(ω′ − ω′′ + ω), (2.47)

from which we obtain

χjαjα(q = 0, ω) =
π

N

∑
k

v2kα

∫ ∞

−∞
dω′
∫ ∞

−∞
dω′′Ak(ω

′)Ak(ω
′′)

× (f(ω′)− f(ω′′)) δ(ω′ − ω′′ + ω). (2.48)

Hence, using Eq. (2.6), we finally obtain

Reσαα(q = 0, ω) =
π

N

∑
k

v2kα

∫ ∞

−∞
dω′Ak(ω

′)Ak(ω
′ + ω)

f(ω′)− f(ω′ + ω)

ω
. (2.49)

In our calculations, we normalize the optical conductivity to the concentration of charge carriers ne

µ(ω) ≡ Reσαα(q = 0, ω)

ne
=

π
N

∑
k v

2
kα

∫∞
−∞ dω′Ak(ω

′)Ak(ω
′ + ω)f(ω

′)−f(ω′+ω)
ω

1
N

∑
k

∫∞
−∞ dω′Ak(ω′)f(ω′)

. (2.50)

As explained in Sec. 2.1 of Part I, at the end of this calculation we need to implement the prescription
Ak(ω

′) → Ak(ω
′ + µ̃) and take the limit µ̃ → −∞, in order to make a connection between the
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calculation that we performed in the grand canonical ensemble, and the formalism where there is only
a single electron in the band. In conjunction, we shift the variable that we integrate over ω′ → ω′ − µ̃
and obtain

µαα(ω) = lim
µ̃→−∞

π
N

∑
k v

2
kα

∫∞
−∞ dω′Ak(ω

′)Ak(ω
′ + ω)f(ω

′−µ̃)−f(ω′+ω−µ̃)
ω

1
N

∑
k

∫∞
−∞ dω′Ak(ω′)f(ω′ − µ̃)

. (2.51)

In this limit, it holds that f(ν − µ̃) ≈ e−βνeβµ̃. The factors eβµ̃ in the denominator and numerator
cancel out, and we finally obtain

µαα(ω) =
π
∑

k v
2
kα

∫∞
−∞ dω′Ak(ω

′)Ak(ω
′ + ω) e

−βω′−e−β(ω′+ω)

ω∑
k

∫∞
−∞ dω′Ak(ω′)e−βω′ . (2.52)

In the limit ω → 0, this quantity is known as the (charge) mobility µ

µ = lim
ω→0

µαα(ω) =
πβ
∑

k v
2
kα

∫∞
−∞ dω′Ak(ω

′)2e−βω
′∑

k

∫∞
−∞ dω′Ak(ω′)e−βω′ . (2.53)

This is a very important physical quantity, and we will be calculating it in the Holstein model.

Remark 25. We will be calculating mobility and optical conductivity only for the 1D Holstein model.
In that case vk = dεk/dk = 2t0 sin k.

2.5 DMFT Optical Conductivity in the limit d→ ∞
In our numerical applications, we will be calculating optical conductivity and mobility within the
cumulant expansion method, DMFT, SCMA, MA, and some methods that we will introduce later on in
the thesis. For each of these methods, we can calculate the relevant quantities in the bubble approxima-
tion, using the formulas we derived in Sec. 2.4.2. However, those results would be incomplete without
the full knowledge of the significance of the vertex corrections. Originally, in the case of the DMFT,
this was answered by Khurana [122], and we review his work in this section.

In Chapter 1 of Part II, we explained that the DMFT equations are formally derived in the limit
of an infinite number of dimensions d → ∞ (in which case they provide an exact description of our
system), but they can also be applied in the finite-dimensional case as well, in which case they provide
an approximate description of our system. In the same manner, here we start by analyzing the DMFT
optical conductivity in the limit d→ ∞. For this, it is useful to use the diagrammatic approach shown
in Fig. 2.4.

Figure 2.4: Another alternative way to write Feynman diagrams for χµν

In the top line, we introduced the two-particle vertex function Λ, which completely takes into account
the contribution of the vertex corrections. On the other hand, the bottom line introduced the irreducible
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two-particle vertex function Λ̃, which plays the same role as the self-energy in the diagrammatic
expansion of the Green’s function. It has a property that it cannot be split into two pieces by cutting
any two fermion lines. Otherwise, there would be overcounting of the diagrams. Hence, there are at
least three distinct fermion paths between any two vertices. Thus, in a complete analogy to the analysis
that we conducted in Sec. 1.4 of Part II, we see that the irreducible vertex function Λ̃ has to be diagonal
in real-space representation, due to the scaling laws of the Green’s functions in the limit d→ ∞. As a
consequence, Λ̃ is momentum-independent in the Fourier space.

Remark 26. The conclusion that Λ̃ has at least three distinct paths between any two vertices is true
only if we regard Λ̃ to be a part of the χjj correlation function, as shown in Fig. 2.4. Stated differently,
this is only true if we regard all vertices of Λ̃ to be internal. This is sufficient for our analysis. However,
it should be noted that this property is not necessarily satisfied if we consider Λ̃ to be an independent
diagram. One such example is illustrated in Fig. 2.5. Therefore, even though Λ̃ by itself can have
momentum dependence, only its local components give a nonvanishing contribution to the χjj . This is
why we, in jargon, often say that Λ̃ is momentum independent quantity.

Figure 2.5: An example of an irreducible two-particle vertex function Λ̃.

The fact that Λ̃ is a momentum-independent quantity has a direct consequence on the vertex
corrections for q = 0 Fourier component of the optical conductivity, as we now demonstrate. The
Feynman rules for any one of the vertex correction terms for χjαjγ(q = 0, iνm) read as

∝
∑
k,iωn

vkα︸︷︷︸
odd function of k

Gk(iνm + iωn)Gk(iωn)︸ ︷︷ ︸
even function of k

× . . .︸︷︷︸
independent of k

= 0. (2.54)

Hence, we conclude that the vertex corrections vanish in the limit d → ∞ for q = 0. The reasoning
that we used in Eq. (2.54) does not work for the bubble term which stays finite in the limit d → ∞.
This is because the bubble term has two vertices with the same momentum, giving v2kα , which is an
even function k.
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3
Numerical Results for the Mobility:

Comparison Between Different Methods

In the previous chapter, we defined the charge mobility1 as the DC conductivity, normalized to the
concentration of charge carriers2 ne, i.e.

µ =
σDC

ne
. (3.1)

We already emphasized that this quantity, although being routinely measured in experiments, is tremen-
dously hard to calculate theoretically. Here, we examine the mobility in the 1D Holstein model, within
the DMFT, CE, SCMA, and MA, using the bubble approximation we reviewed in the previous chapter.
The results that we present are a product of our original work that was published in Ref. [87].

Remark 27. The discussion on the importance of vertex corrections will be postponed until Chap-
ters 5 and 6.

3.1 Technical Details
In terms of the spectral functions, the charge mobility in the bubble approximation can be expressed
as in Eq. (2.53). In our case, the dispersion is εk = −2t0 cos k, so Eq. (2.53) becomes

µ =
4πt20β

∑
k

∫∞
−∞ dνAk(ν)

2e−ν/T sin2 k∑
k

∫∞
−∞ dνAk(ν)e−ν/T

, (3.2)

where the momenta k take the values ki = −π + 2πi
N

for i = 0, 1, 2, . . . N − 1. However, we are
interested in the results in the thermodynamic limit, which correspond to N → ∞. This is usually
obtained by evaluating Eq. (3.2) for some finite N , which is then increased until the results fully
converge.

Applying this within the DMFT, SCMA or MA is not numerically expensive, since the self-energy
is local. For a given set of parameters (ω0, g, T ) we just need to calculate the self-energy once, and
then the spectral functions for different values of momenta are obtained as

Ak(ω) = − 1

π
Im

1

ω − εk − Σ(ω)
. (3.3)

Therefore, once the self-energy is known, there are no numerically demanding calculations, and a very
large number of k-points can be used to ensure the convergence of results. On the other hand, the

1We often abbreviate the name, and simply call it the mobility.
2This quantity should also be normalized to the unit charge e, but we already set this to unity.
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processing time required for the calculation of µ within the CE method rises linearly with the number
of k-points we sum over. This is a consequence of the fact that the CE self-energy is not necessarily
local. In practice, for every parameter regime the CE was applied to, we checked that N = 64 was
large enough to be representative of the thermodynamic limit. This was also crosschecked using the
DMFT.

However, the convergence with respect to the number of k points was not the only numerical
challenge that was raised. In particular, the term e−ν/T in Eq. (3.2) introduces numerical instabilities,
as even a small numerical noise of Ak(ν) at ν ≪ −1 will be inflated and give an enormous overall
error in the mobility. This is why the integrals in Eq. (3.2) require introducing some kind of negative
frequency cutoff

∫∞
−∞ →

∫∞
−Λ

. We always check that the mobility results converge with respect to Λ.
We note that this has to be done in all the methods (DMFT, SCMA, MA, and CE) we use. However,
in the case of DMFT, SCMA, and MA, this is easily done due to the high numerical accuracy of our
numerical implementations. On the other hand, the convergence with respect to Λ is much harder to
achieve within the CE, as the Green’s functions are initially calculated in the time-domain and require
the use of numerical Fourier transform, which can introduce additional numerical errors. To overcome
this, we have implemented a well-known interpolation scheme [123] in order to increase the precision
of the Fourier transform. This is explained in detail in Appendix A. Nevertheless, there is still some
numerical noise in the regimes of low temperatures and strong interactions which prevented us from
precisely calculating the mobility in these cases. We note that we will only show the data where an
accurate calculation was possible.

Remark 28. Other than introducing numerical instabilities, there are also some important conse-
quences of the exponential term e−ν/T in Eq. (3.2). This term, despite the factor sin2 k in the numer-
ator of Eq. (3.2), implies that the largest contribution to the mobility most commonly comes from
the spectral functions around the bottom of the band (k ≈ 0), as they are typically situated at lower
frequencies with respect to their higher momentum counterparts. This is favourable for the CE, as we
have seen that the spectral function predictions of this method are more reliable for k ≈ 0 than for
0 < k < π.

3.2 Results
In Fig. 3.1i, we present the DMFT, CE, and SCMA numerical results for the temperature dependence
of the charge mobility in the bubble approximation. We also show the MA results in Fig. 3.1ii, but
these will be only briefly discussed.

Very Weak Couplings

For very weak electron-phonon coupling, all methods are in agreement; see Fig. 3.1 for α ≲ 0.25.
In this case, the electron-phonon scattering is weak, which is why the quasiparticle lifetime τk is
long, and the linear time dependence dominates in the cumulant function. This last claim can be seen
by inspecting Eq. (3.43) and Fig. 3.1(c), both from Part II. Although that figure demonstrates that
the cumulant function is linear for large times, we need to keep in mind that, in the general case, the
Green’s functionGk(t) = Gk,0(t) exp(Ck(t)) might already be attenuated before the cumulant actually
starts being linear. However, since g is only a prefactor in Eq. (3.43) of Part II and the lifetime scales
as τk ∝ g−2 (see Eq. (3.45) of Part II), we see that if the electron-phonon coupling g is sufficiently
weak, then the cumulant function will be linear for a long time before the Green’s function attenuates.
In fact, in this case, the cumulant function will be linear for most of the lifetime τk. Hence, we can
approximate that Eq. (3.19) from Part II holds in the entire domain of time

Ck − iεkt ≈ −iẼkt+ const, (3.4)
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where the real and imaginary part of Ẽk correspond to the quasiparticle energy and lifetime

ReẼk = Ep,k; ImẼk = − 1

2τk
, (3.5)

as we already proved in Sec. 3.2.3 of Part II. In this case, the Green’s function is given by Eq. (3.1) of
Part II, which reads as3

Gk(t) = −iθ(t)e−iẼkt · const, (3.6)

while the corresponding quantity in the Fourier space is given by

Gk(ω) =
const

ω − Ẽk
= const ·

ω − Ep,k − i
2τk

(ω − Ep,k)
2 +

(
1

2τk

)2 . (3.7)

The spectral function is then simply a Lorentzian

Ak(ω) =
1

π

1
2τk

(ω − Ep,k)
2 +

(
1

2τk

)2 , (3.8)

where we set the constant from Eqs. (3.6) and (3.7) to 1, to ensure that the zeroth spectral sum rule is
satisfied. Since we are considering the weak coupling limit, the lifetime τk is large, so the Lorentzian
in Eq. (3.8) can be approximated as a Dirac delta function

Ak(ω) ≈ δ(ω − Ep,k). (3.9)

However, we see that there isAk(ν)2 in the numerator of Eq. (3.2). In this case, Eq. (3.9) is not suitable.
Instead, we can use the fact that by squaring Eq. (3.8), we get a sharp function with a property that∫∞
−∞ dωAk(ω)

2 = τkδ(ω − Ep,k)/π. Hence, we can approximate

Ak(ω)
2 =

τk
π
δ(ω − Ep,k). (3.10)

Plugging Eqs. (3.9) and (3.10) into Eq. (3.2), we obtain

µweak ≈
4t20
T

∑
k τke

−Ep,k/T sin2 k∑
k e

−Ep,k/T
, (3.11)

where Ep,k is given by Eq. (3.65) of Part II and Eq. (2.23) of Part I. We checked that Eq. (3.11) is in
agreement with numerical results from Fig. 3.1i in the case of very weak couplings. In addition, we
see that at high temperatures Eq. (3.11) further simplifies as e−Ep,k/T ≈ 1. In this case, the lifetime is
inversely proportional to the temperature τk ∝ 1/T , as seen from Eq. (3.45) of Part II, which implies
the power law behavior of the mobility

µweak ∝ 1/T 2. (3.12)

Once again, we emphasize that this conclusion holds only for very weak electron-phonon couplings,
where the assumption of weak scattering is still satisfied despite the high temperatures4; see Figs. 3.1i(a)
and 3.1i(b) for α = 0.25 and Fig. 3.1i(c) for α =

√
2/10.

3The constant in Eq. (3.6) is, of course, not the same constant as in Eq. (3.4).
4In the case of extremely high temperatures T → ∞, due to intense scattering of electrons and phonons, the lifetime

tends to zero, and our assumptions no longer continue to hold true, meaning that it cannot be expected that µweak ∝ 1/T 2

continues to hold. In fact, the limit T → ∞ will be discussed in the following text.
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Somewhat Stronger Couplings

If α (for fixed ω0) is a little bit larger than the case we already analyzed (but still small), the DMFT,
CE, and SCMA all remain in agreement; see Fig. 3.1i(a) for α ≤ 1 and Figs. 3.1i(b) and 3.1i(c) for
α ≤ 0.5. However, the range of validity of the MA is smaller, and it proves to be reliable only for
much weaker interactions, such as α ≲ 0.25 in Fig. 3.1ii(a), α ≲ 0.25 in Fig. 3.1ii(b), and α ≲

√
2/10

in Fig. 3.1ii(c). In the case of somewhat stronger couplings, MA starts to deviate from other methods,
which is more pronounced at lower temperatures. This is expected as the MA takes into account only
the lowest-order Feynman diagram, which is why we focus on the predictions of other methods.

In the regimes of somewhat stronger couplings, we see that there is a universal power law behavior
at higher temperatures µ ∝ T−3/2; see Fig. 3.1i(a) for 1/

√
2 ≤ α ≤ 2.5, Fig. 3.1i(b) for 0.5 ≤ α ≤ 2

and Fig. 3.1i(c) for 0.5 ≤ α ≤ 1. Within the CE method, this can be explained as follows. If the
temperature is sufficiently high, the Green’s function in the time domain is quickly damped, which is
why Ck(t) can be approximated with just the lowest order (quadratic) Taylor expansion around t = 0,
which reads as

Ck(t) ≈
t2

2
· d

2Ck(t)

dt2

∣∣∣∣∣
t=0

= −g2(2nph + 1)
t2

2
, (3.13)

as a consequence of Eqs. (3.8) and (3.44), both from Part II.
Therefore, the corresponding Green’s function (see Eq. (3.1) of Part II) is thus a Gaussian

Gk(t) = −iθ(t)e−iεkte− g2

2
(2nph+1)t2 , (3.14)

which also implies the Gaussian spectral function

Ak(ω) =
e
− (ω−εk)2

2g2(2nph+1)√
2πg2(2nph + 1)

. (3.15)

This form of the spectral function, as we now demonstrate, allows us to completely analytically evaluate
the expression in Eq. (3.2). In particular, we directly see that∫ ∞

−∞
dνAk(ν)e

−βν = e
1
2
g2(2nph+1)β2

e−βεk , (3.16a)∫ ∞

−∞
dνAk(ν)

2e−βν =
1

2
√
g2(2nph + 1)π

e
1
4
g2(2nph+1)β2

e−βεk . (3.16b)

Now, Eq. (3.2) is evaluated by changing the sum over momenta to integral, as follows

µhigh−T =
4πt20β

∑
k sin

2 k 1

2
√
g2(2nph+1)π

e
1
4
g2(2nph+1)β2

e−βεk∑
k e

1
2
g2(2nph+1)β2

e−βεk

=
2πt20β

e
1
4
g2(2nph+1)β2

√
g2(2nph + 1)π

∑
k e

2βt0 cos k sin2 k∑
e2βt0 cos k

= t20βe
− 1

4
g2(2nph+1)β2

√
π

g2(2nph + 1)

∫ π
−π dk e

2βt0 cos k (1− cos(2k))∫ π
−π dk e

2βt0 cos k
. (3.17)

This is now easily evaluated using the integral representation of the modified Bessel functions of the
first kind In, which reads as

In(z) =
1

π

∫ π

0

ez cos θ cos(nθ)dθ. (3.18)
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Therefore ∫ π

−π
e2βt0 cos k = 2πI0(2βt0), (3.19)∫ π

−π
e2βt0 cos k cos(2k) = 2πI2(2βt0). (3.20)

If we additionally use the recurrence relation I0(z)− I2(z) =
2
z
I1(z), we also see that∫ π

−π
e2βt0 cos k (1− cos(2k)) = 2π (I0(2βt0)− I2(2βt0)) =

2π

βt0
I1(2βt0). (3.21)

Plugging this back into Eq. (3.17), we finally obtain

µhigh−T =
t0
g

√
π

2nph + 1
exp

(
−g

2(2nph + 1)

4T 2

)
I1(

2t0
T
)

I0(
2t0
T
)
, (3.22)

Since we are working in the high-temperature limit, the previous expression can be further simplified
using

2nph + 1 ≈ 2T/ω0, for large T, (3.23a)
I1(2t0/T )/I0(2t0/T ) ≈ t0/T, for large T. (3.23b)

Combining this with Eq. (3.22), we finally obtain the result we were looking for

µhigh−T ∝ T−3/2, for T ≫ t0, ω0. (3.24)

Remark 29. The result, obtained by substituting Eq. (3.23) into Eq. (3.22), coincides with the mobility
obtained by combining the Einstein relation, between the mobility and diffusion coefficient, with the
Marcus formula [4, 124].

The conclusion that we have reached in Eq. (3.24) should be quite general. For the derivation of
this result, we only used the fact that the temperature is very high, without any assumptions on the
strength of the electron-phonon coupling. This seems to contradict the result in Eq. (3.12). However,
this is not the case. As we already noted, Eq. (3.12) is valid in the regime of high temperatures
and weak electron-phonon coupling, but not in the case of extremely high temperatures where the
assumption of weak scattering breaks down. Therefore, even for weak couplings, we can expect that
the temperature dependence of the mobility would eventually transition to the power law behavior of
the form µ ∝ T−3/2, for extremely high temperatures5.

Intermediate and Strong Couplings

In the case of intermediate and strong electron-phonon coupling, MA is practically useless; for exam-
ple, see Fig. 3.1ii (a) for α ≳ 2.5. On the other hand, the SCMA gives satisfactory results for high
temperatures and intermediate electron-phonon couplings, but it deviates from the DMFT at lower
temperatures (see, e.g., Fig. 3.1i(a) for α = 2.5 and Fig. 3.1i(b) for α = 2) and also for stronger
coupling strength (see, e.g., Fig. 3.1i(a) for α > 2.5 and Fig. 3.1i(b) for α > 2). At these stronger
couplings, the DMFT predicts the non-monotonic mobility, where a region of decreasing mobility with
decreasing temperature is ascribed to the hopping transport in phenomenological theories [60, 124].
The strong coupling mobility is better described by the CE than SCMA, although low-temperature
results are missing due to our inability to converge the results with respect to the cutoff Λ.

5We note that in the regimes of stronger electron-phonon couplings, higher temperatures are required for the asymptotic
behavior µ ∝ T−3/2 to be reached, as can be seen from the results in Fig. 3.1.
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Figure 3.1: Temperature dependence of the mobility for the CE, DMFT, MA, and SCMA.
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Chapter 4 - Ward Identity and its Consequences

4
Ward Identity and its Consequences

As we briefly discussed in Sec. 2.4, the conservation of electric charge imposes a relation between
the renormalized vertex function and the self-energy. This relation is known as the Ward identity
[1, 125–127]. The proof of this identity for the zero temperature case can be found in Ref. [127]. This
identity was also known to be satisfied in the finite-temperature case as well, since the sketch of the
derivation appeared in Ref. [125]. Nevertheless, we are not aware of any references where that proof
has been presented in detail. This is what we will be doing in this chapter. We note that our proof is
more general than the one that was sketched in Ref. [125], as we allow for a larger flexibility in the
choice of the current density operator.

4.1 Introduction and Mathematical Formulation of the Ward iden-
tity

Since the charge conservation represents a relation between the current j and the density n, it is useful
to use a 4-vector1 notation jµ = (n, j)T where these quantities are unified into a single object2 jµ. In
addition, we also use r ≡ (−iτ, r)T , p ≡ (iω,p),

∑
p ≡

∑
iω

∑
p, as well as3 ∑

r ≡
∫ β
0
dτ
∑

r. It is
now completely natural to generalize χjαjγ(q, ω) from Eq. (2.37) by introducing a correlation function
between 4-currents4

χµνjj (q, τ) =
1

N
⟨T̂τjµ(q, τ)jν(−q, 0)⟩, (4.1)

and also to introduce the 4-vector generalization of the renormalized current vertex Γν (compare with
Eq. (2.38)) as follows

χµν(q) ≡ − 1

Nβ

∑
p

[
γµ(p+ q,p)G(p+ q)Γν(p, p+ q)G(p)

]
. (4.2)

Since the renormalized vertex Γν fully takes into account both the bubble part and the vertex correc-
tions, it represents the central quantity of our study [1, 128]. The Ward identity is formulated using
this quantity:

1We use the following convention for the metric η = [−1, 1, 1, 1]
2A detailed discussion and derivation of the current operator jµ, both in the continuum and on a lattice, was presented

in Appendix C (a brief overview is given in Sec. C.7). For now, it suffices to know that the current can be expressed as in
Eq. (C.121), with a symmetry property given inf Eq. (C.122).

3In the case of the continuum we should replace the discrete lattice coordinate r with a continuous variable x, and
hence

∑
r ↔

∫∞
−∞ dx.

4In order to make the notation somewhat simpler, in this chapter we often write an argument of a function in imaginary
time as τ instead of −iτ .
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4.2 - Proof of the Ward Identity

Theorem 3 (Ward identity). Let us consider the hypercubic lattice where p and q are arbitrary 4-
momenta, G is the interacting Green’s function and Γµ is the renormalized vertex function. Then, the
conservation of charge implies that the following identity holds

G(p)−1 −G(p+ q)−1 = ∆µ(q)Γµ(p+ q, p). (4.3)

where the Einstein summation convention has been used, while ∆µ(q) is given by5 Eqs. (C.110)
and (C.124).

Remark 30. In the limit of long wavelength q → 0, the Ward identity holds even for lattices that are
not hypercubic, and also for the system in the continuum. In both of these cases ∆(q) = q.

4.2 Proof of the Ward Identity
We now present the proof in the finite-temperature case, but we note that the same proof also works at
T = 0, in real time, if we replace

∫ β
0
dτ ↔

∫∞
−∞ dt and 1

β

∑
iω ↔

∫∞
−∞

dω
2π

.

4.2.1 Definition of Correlation Function Λµ(r1, r2, r3)

Since the proof of the Ward identity is not completely straightforward, let us try to motivate the main
ideas: In Sec. 4.1, we noted that the Ward identity (4.3) is a consequence of the charge conservation

∂nq

∂τ
+∆(q) · jq(τ) = 0. (4.4)

Hence, it is natural to try to apply this for jµ(q, τ) in the correlation function χµν(q, τ), which is
connected to the renormalized vertex function. However, it turns out that it would be much more
useful if the creation and annihilation operators in the expression for current jν(−q, τ = 0) =∑

p c
†
pγ

ν(p− q,p)cp−q appeared in different imaginary times c†p(τ1) and cp−q(τ2). This could be
emulated by defining a new auxiliary quantity intead of the current-current correlation function, such
as ⟨T̂τ jµq(τ) ck(τx) c†k+q(τy). However, somewhat less cumbersome expressions are obtained in the
coordinate space, where we can fully utilize the compact 4-vector notation. This is why we introduce

Λµ(r1, r2, r3) = ⟨T̂τjµ(r3)c(r1)c†(r2)⟩. (4.5)

This function satisfies

Λµ(r1, r2, r3) = Λµ(r1 − r2, 0, r3 − r2) = Λµ(r1 − r3, r2 − r3, 0) = Λµ(0, r2 − r1, r3 − r1), (4.6)

as a consequence of the temporal and space translation symmetry of the system. In the real-time
formalism (at T = 0), this defines Λµ on the whole domain of its variables. On the other hand, we
need to be more careful in imaginary time formalism. It turns out that Eq. (4.5) formally converges
only for τmin < τintermediate < τmax < β + τmin. For example, if τ3 > τ1 > τ2, then:

Λµ(r1, r2, r3) =
1

ZTr
[
e−βHeτ3Hjµr3e

−Hτ3eHτ1cr1e
−Hτ1eHτ2c†r2e

−Hτ2]
=

1

ZTr
[
e−H(β−τ3+τ2)jµr3e

−H(τ3−τ1)cr1e
−H(τ1−τ2)c†r2

]
, (4.7)

5The corresponding current operator is given by Eq. (C.108)
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4.2 - Proof of the Ward Identity

which converges for τ2 < τ1 < τ3 < β + τ2. In other regions (in τ space) we will define Λµ,
such that certain properties are satisfied6. Let us motivate what those properties are: in this example
(τ2 < τ1 < τ3 < β + τ2), notice that τ3 − β < τ2 < τ1 < τ3. Hence

Λµ(r1, τ1, r2, τ2, r3, τ3 − β)

= Tr
[
e−βHeHτ1cr1e

−Hτ1eHτ2c†r2e
−Hτ2eH(τ3−β)jµr3e

−H(τ3−β)]
= Tr

[
e−βHeτ3Hjµr3e

−Hτ3eHτ1cr1e
−Hτ1eHτ2c†r2e

−Hτ2]
= Λµ(r1, r2, r3), (4.8)

where the cyclic property of trace was used in the second line. We also used the fact that the current
operator commutes with all operators under time ordering. As a result, we see that we can extend the
definition of Λµ to regions where Eq. (4.5) does not formally converge, such that Λµ is periodic (with
period β) with respect to τ3: Λµ(r1, τ1, r2, τ2, r3, τ3 ± β) = Λµ(r1, r2, r3). Analogous reasoning can
be used to impose that Λµ is antiperiodic (with period β), with respect to τ2 and τ3

Λµ(r1, τ1, r2, τ2 ± β, r3, τ3) = −Λµ(r1, r2, r3), (4.9)
Λµ(r1, τ1 ± β, r2, τ2, r3, τ3) = −Λµ(r1, r2, r3). (4.10)

Therefore, we successfully extended the definition of Λµ to the whole τ domain. We note that these
periodic/antiperiodic conditions are consistent with translational invariance.

4.2.2 Definition of Γ̃µ

As a reminder, we introduced the correlation function Λµ since the consequences of the charge con-
servation (4.4) are much more directly reflected on this quantity than on current-current correlation
function χµν . However, to proceed with the proof of the Ward identity, we first need to find a relation
that connects Λµ with the renormalized vertex function Γµ. To do so, we first introduce a new quantity
Γ̃µ(r1, r2, r3) such that

Λµ(r1, r2, r3) =
∑
r′1

∑
r′2

G(r1 − r′1)Γ̃
µ(r′1, r

′
2, r3)G(r

′
2 − r2). (4.11)

Although this looks quite abstract, it turns out that this new quantity, in the Fourier space, is actually
the same as the renormalized vertex function Γµ(p, p + q) from Eq. (4.2). We will prove this in the
following sections, but before that, let us first inspect some properties of Γ̃µ: First of all Γ̃µ is invariant
under spatial translations r1 → r1 + a, r2 → r2 + a, r3 → r3 + a. This is easily checked from
Eq. (4.11) as a consequence of the fact that both Λµ and the Green’s function G are invariant under
such transformations. Furthermore, Γ̃µ(r′1, r

′
2, r3) inherited from Λµ(r1, r2, r3) the periodicity with

respect to τ3, with period β. However, we cannot say anything about the (anti)periodicity with respect
to τ ′1 or τ ′2, as the integration over these variables is performed only in the domain7 (0, β) in Eq. (4.11).
Outside of this interval Γ̃µ does not even have to be defined. However, we want to define Γ̃µ on the
whole interval of τ ′1 and τ ′2, such that the subintegral function in Eq. (4.11) becomes periodic with
respect to both τ ′1 and τ ′2 with period β. To do so, we must impose that Γ̃µ(r′1, r

′
2, r3) is antiperiodic

with respect to τ ′1 and τ ′2. This is a consequence of the fact that G(r1 − r′1) and G(r′2 − r2) have such
properties. Now, it turns out that Γ̃µ also posses a symmetry with respect to temporal translations. This
can be proved as follows: first we use arbitrary τ to translate τ1 → τ1 + τ , τ2 → τ2 + τ , τ3 → τ3 + τ
in Eq. (4.11), and use the fact that Λµ is invariant under such transformation. Then, in the integrals

6We note that this is exactly the same approach that is used for defining the finite temperature Green’s function in
imaginary time.

7As we noted,
∑

r ≡
∫ β

0
dτ
∑

r
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4.2 - Proof of the Ward Identity

over the imaginary times (in the right-hand side of Eq. (4.11)), we use substitutions τ ′1 → τ ′1 + τ ,
τ ′2 → τ ′2 + τ , after which the domain of integration becomes (τ, β + τ). After these transformations,
the Green’s functions remain unchanged. At last, we use the property that the whole subintegral
function in Eq. (4.11) is periodic with a period β. Hence, we can restore the domain over which we
integrate from (τ, β + τ) back to (0, β). As a result, all quantities in Eq. (4.11) remain unchanged,
expect for the fact that all temporal variables in Γ̃µ are shifted by τ . This is only possible if Γ̃µ posseses
a symmetry with respect to temporal tranlations. This completes our proof8.

All of these properties finally enable us to define the Fourier series of Γ̃µ as

Γ̃µ(p, p+ q) =
∑
r2

∑
r3

Γ̃µ(0, r2, r3)e
i(pr2+qr3). (4.12)

We note that due to (anti)periodic properties that we examed, q0 is bosonic, while p0 is fermionic
Matsubara frequency. Before we prove that Γ̃µ from Eq. (4.12) is indeed the same as Γµ from (4.2), let
us first show different forms of Fourier transforms. This will be quite useful for us since Γ̃µ is defined
in the coordinate space (see Eq. (4.11)), while Γµ is defined in k-space (see Eq. (4.2)).

4.2.3 Fourier Transform
The purpoise of this section is twofold:

• We define the convention that will be used for the Fourier transform.

• Due to the translational invariance of the system, we will see that it is possible to introduce some
arbitrary (free) parameters in the Fourier transform. This gives us the freedom to choose them
conveniently in our analysis later.

Γ̃µ(r1, r2, r3)

Translational invariance of Γ̃µ enabled us to write its Fourier transform as in Eq. (4.12). However, the
translational invariance can also be used to introduce an arbitrary (free) parameter as follows9:

Γ̃µ(p, p+ q) =
∑
r2

∑
r3

Γ̃µ(0, r2, r3)e
ipr2+iqr3

=

[
r2 → r2 − r1
r3 → r3 − r1

]
=
∑
r2

∑
r3

Γ̃µ(0, r2 − r1, r3 − r1)e
i[p(r2−r1)+q(r3−r1)]

=
∑
r2

∑
r3

Γ̃µ(r1, r2, r3)e
i[p(r2−r1)+q(r3−r1)]. (4.13)

Here, r1 is an arbitrary parameter.

8We note that the properties of (anti)periodicity with period β, and temporal translational invariance are not mutually
contradictory since we have an even number "antiperiodic" (τ1 and τ2) variables.

9The combination of periodic (antiperiodic) variable τ3 (τ2) of Γ̃µ with bosonic (fermionic) Matsubara frequency q0

(p0) has a consequence that the whole subintegral function is periodic with respect to both τ2 and τ3. Hence, the domain
of integration, of both τ2 and τ3, can always be shifted (0, β) ↔ (τ1, β + τ1) for arbitrary τ1.
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4.2 - Proof of the Ward Identity

G(r1 − r′1)

In a completely analogous manner, we can introduce an arbitrary (free) parameter r′ into the Fourier
transform of the Green’s function

G(p) =
∑
r

e−ip(r−r
′)G(r − r′) =

∑
r

eip(r−r
′)G(r′ − r), (4.14)

Λµ(r1, r2, r3)

The quantity Λµ(r1, r2, r3) was (originally10) defined in Eq. (4.5), as a correlation function between
current, annihilation and creation operators. It is thus natural that the convention for the Fourier
transform of Λµ follows the convention for jq, cp and c†k , which (in the case of spatial coordinates)
read as:

jµq =
∑
r

e−iqrjµ(r), (4.15a)

cp =
1√
N

∑
r

e−iprcr, (4.15b)

c†k =
1√
N

∑
r

eikrc†r. (4.15c)

We note that the factor 1/
√
N in Eqs. (4.15b) and (4.15c) is standard convention, as we want to keep

the property that c and c† transform as c†λ =
∑

i⟨i|λ⟩c†i and cλ =
∑

i⟨λ|i⟩ci, when the basis is changed
{|i⟩} → {|λ⟩}.

Dirac Identity in the Matsubara space

In the real-time formalism, we can get a nice identity11 if we successively apply Fourier and inverse
Fourier transform to an arbitrary function F . The same can be done in the Matsubara space as well

F (τ) =
1

β

∑
iωn

e−iωnτ

∫ β

0

dτ ′eiωnτ ′F (τ ′) (4.16)

=
1

β

∫ β

0

dτ ′
∑
iωn

e−iωn(τ−τ ′)F (τ ′) (4.17)

=
1

β

∫ β

0

dτ ′
∑
iωn

e−iωn(τ ′−τ)F (τ ′) (4.18)

In the last line we used the fact that Matsubara frequencies are symmetric, so we can use a substitution
iωn → −iωn.

4.2.4 Proof that Γ̃µ(p, p+ q) ≡ Γµ(p, p+ q)

Let us first remind ourselves that the main purpose of the renormalized vertex function in our study is
to use it in Eq. (4.2) to calculate the current-current correlation function. In that sense, we will say that

10Afterwards we imposed that it has certain symmetry properties with respect to temporal variables; see Sec. 4.2.1
11Which is basically just one of the ways to represent the Dirac delta function
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4.2 - Proof of the Ward Identity

Γ̃µ(p, p+ q) is identical with Γµ(p, p+ q) if it produces the same result when inserted into Eq. (4.2).
Hence, our task is to prove that χµν(q) coincides with the following quantity

χ̃µν(q) ≡ − 1

Nβ

∑
p

[
γµ(p+ q,p)G(p+ q)Γ̃ν(p, p+ q)G(p)

]
. (4.19)

Since renormalized vertex function was defined in Eq. (4.11) in coordinate space, let us first use the
inverse Fourier transform on both Γ̃ν and G.

χ̃µν(q) = − 1

Nβ

∑
p

[
γµ(p+ q,p)

∑
r′1

ei(p+q)(r
′
1−r1)G(r1 − r′1)∑

r′′2 ,r3

Γ̃ν(r′′1 , r
′′
2 , r3)e

i[p(r′′2−r′′1 )+q(r3−r′′1 )]
∑
r2

G(r′2 − r2)e
ip(r2−r′2)

]
. (4.20)

Here, r1, r′′1 and r′2 are arbitrary parameters. We can now conveniently choose r′′1 = r′1 and r′2 = r′′2 .12

Hence

χ̃µν(q) = − 1

Nβ

∑
p,r2,r3

[
γµ(p+ q,p)e−i(p+q)r1eiqr3eipr2

×
∑
r′1,r

′′
2

G(r1 − r′1)Γ̃
ν(r′1, r

′′
2 , r3)G(r

′′
2 − r2)

]
. (4.21)

The bottom line in Eq. (4.21) can be recognized and Λν(r1, r2, r3) from Eq. (4.11), giving

χ̃µν(q) = − 1

Nβ

∑
p,r2,r3

e−i(p+q)r1eipr2eiqr3γµ(p+ q,p)Λν(r1, r2, r3). (4.22)

It is now convenient to separate the spatial and temporal coordinates. Thus, we can now set the arbitrary
parameter r01 ≡ τ1 = 0. Since r1 is still arbitrary, we can sum over this parameter, and divide everything
with the number of k-points (which is equal to N ).

χ̃µν(q) = − 1

Nβ

∑
p

γµ(p+ q,p)
∑
iωp

∫ β

0

dτ2

∫ β

0

dτ3e
−iωpτ2e−iωqτ3

× 1

N

∑
r1,r2,r3

e−i(p+q)r1eipr2eiqr3Λν(r1, 0, r2, τ2, r3, τ3). (4.23)

Using the convention from Eq. (4.15), we can see that the bottom line of Eq. (4.23) is equal to

Λν(p+ q, 0,p, τ2,−q, τ3) = Λν(p+ q,−τ3,p, τ2 − τ3,−q, 0), (4.24)

where we used the temporal translational invariance to obtain the last equality. Plugging this back into
Eq. (4.23), using the substitution τ2 → τ2 + τ3, and using the fact that the whole subintegral function
is periodic with respect to τ2 with period β, such that we can shift the domain of integration from
(τ3, β + τ3) back to (0, β), we get

12However, we cannot choose for example r1 = r2, as r1 "sees" r2 as a variable. The choice r′′1 = r′1 was allowed (same
for r′2 = r′′2 ) as the free parameter r′′1 is situated inside the integrals over r′′2 and r3, where r′1 is taken to be constant (i.e.
r′′1 sees r′1 as a constant). Of course, we can later interchange the integrals, resulting in the fact that r′′1 no longer sees r′1 as
a constant, but this is allowed due to the Fubini’s theorem.
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4.2 - Proof of the Ward Identity

χ̃µν(q) = − 1

Nβ

∑
p

γµ(p+ q,p)
∑
iωp

∫ β

0

dτ2

∫ β

0

dτ3e
−iωp(τ2+τ3)e−iωqτ3

× Λν(p+ q,−τ3,p, τ2,−q, 0). (4.25)

Let us now use the substitution τ3 → −τ3 and, similarly as before, use the periodicity to shift the
domain of integration back to (0, β). We get

χ̃µν(q) = − 1

N

∑
p

γµ(p+ q,p)

∫ β

0

dτ3e
iωqτ3

× 1

β

∑
iωp

∫ β

0

dτ2e
−iωp(τ2−τ3)Λν(p+ q, τ3,p, τ2,−q, 0). (4.26)

The bottom line of the previous expression can be simplified using the identity in Eq. (4.18)

χ̃µν(q) = − 1

N

∑
p

γµ(p+ q,p)

∫ β

0

dτ3e
iωqτ3Λν(p+ q, τ3,p, τ3,−q, 0). (4.27)

Since we have only one temporal variable left, we will change the label of the dummy variable τ3 → τ .
Furthermore, since τ is restricted to the values between 0 and β, we can represent Λµ using Eq. (4.5)

χ̃µν(q) = − 1

N

∑
p

∫ β

0

dτeiωqτγµ(p+ q,p)⟨T̂τjν−q(0)cp+q(τ)c
†
p(τ)⟩. (4.28)

Under T̂τ we can arbitrarily interchange the operators as long as we keep track of the minus signs.
Hence

χ̃µν(q) =
1

N

∫ β

0

dτeiωqτ ⟨T̂τ
∑
p

c†p(τ)γ
µ(p+ q,p)cp+q(τ)j

ν
−q(0)⟩ (4.29)

Now, we recognize the current operator from Eq. (C.121) and obtain

χ̃µν(q) =
1

N

∫ β

0

dτeiωqτ ⟨T̂τjµq(τ)jν−q(0)⟩. (4.30)

This coincides with χµν(q), as seen from Eqs. (2.37b) and (4.1). This completes the proof that Γ̃µ = Γµ.

This property enables us to apply the charge conservation from Eq. (4.4) directly in Eq. (4.5), and
connect the obtained result to the renormalized vertex function via Eq. (4.11). In order to do that, we
first need to figure out how to differentiate expressions which have time ordering operator. This will
be discussed in the next section.

4.2.5 Differentiation under the Time-Ordering Operator
Theorem 4. Let:

A(τ1, τ2, τ3) = T̂τZ(τ3)X(τ1)Y (τ2), (4.31)

where T̂τ is the time-ordering operator, X and Y are arbitrary fermionic operators13, while Z is some
bosonic operator14. Then:

∂A

∂τ3
= T̂τ

∂Z

∂τ3
XY + δ(τ3 − τ1)T̂τ [Z,X]Y + δ(τ3 − τ2)T̂τX[Z, Y ], (4.32)

where [, ] is the commutator.
13In our case these are annihilation and creation operators
14In our case this is the current operator.
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4.2 - Proof of the Ward Identity

Proof. Let us write out the time dependence in the time-ordering operator explicitly:

A(τ1, τ2, τ3) =ZXY θ(τ3 − τ1)θ(τ1 − τ2)

−ZY Xθ(τ3 − τ2)θ(τ2 − τ1)

+XY Zθ(τ1 − τ2)θ(τ2 − τ3)

+XZY θ(τ1 − τ3)θ(τ3 − τ2)

−Y ZXθ(τ2 − τ3)θ(τ3 − τ1)

−Y XZθ(τ2 − τ1)θ(τ1 − τ3). (4.33)

Hence:

∂A

∂τ3
=T̂τ

∂Z

∂τ3
XY

+ZXY δ(τ3 − τ1)θ(τ1 − τ2)

−ZY Xδ(τ3 − τ2)θ(τ2 − τ1)

−XY Zδ(τ2 − τ3)θ(τ1 − τ2)

−XZY (δ(τ1 − τ3)θ(τ3 − τ2)− δ(τ3 − τ2)θ(τ1 − τ3))

+Y ZX (δ(τ2 − τ3)θ(τ3 − τ1)− δ(τ3 − τ1)θ(τ2 − τ3))

+Y XZδ(τ1 − τ3)θ(τ2 − τ1). (4.34)

Let us now group the terms with a common delta function:

∂A

∂τ3
− T̂τ

∂Z

∂τ3
XY = δ(τ3 − τ1)

[
θ(τ1 − τ2)(ZXY −XZY )

−θ(τ2 − τ1)(Y ZX − Y XZ)
]

+δ(τ3 − τ2)
[
θ(τ1 − τ2)(XZY −XY Z)

−θ(τ2 − τ1)(ZY X − Y ZX)
]

(4.35)

Hence:
∂A

∂τ3
= T̂τ

∂Z

∂τ3
XY + δ(τ3 − τ1)T̂τ [Z,X]Y + δ(τ3 − τ2)T̂τX[Z, Y ]. (4.36)

Our next task is to find the consequences of charge conservation (4.4) on Λµ and then deduce how is
that connected to the renormalized vertex function using Eq. (4.11).

4.2.6 The Consequences of Charge Conservation on Λµ

Since the charge conservation in Eq. (4.4) contains ∂nq

∂τ
, let us first use Eq. (4.36) to differentiate

Λ0(r1, r2, r3) with respect to τ3. We will restrict ourselves to the case then τ1, τ2, τ3 ≥ 0. In this case
Λµ can be expressed as in Eq. (4.5). We obtain:

∂Λ0(r1, r2, r3)

∂τ3
=⟨T̂τ

∂n(r3)

τ3
c(r1)c

†(r2)⟩

+ δ(τ3 − τ1)⟨T̂τ [n(r3), c(r1)]c†(r2)⟩
+ δ(τ3 − τ2)⟨T̂τc(r1)[n(r3), c†(r2)]⟩ (4.37)
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4.2 - Proof of the Ward Identity

The delta functions ensure that we are always dealing with equal time commutators. To calculate these,
we express the density as n(r3) = c†(r3)c(r3), and use [AB,C] = A{B,C} − {A,C}B, which is
needed as the fields c†(r) are fermionic

δ(τ3 − τ1)[n(r3), c(r1)] = −δ(τ3 − τ1){c†(r3), c(r1)}c(r3)
= −c(r3)δ(r3 − r1), (4.38)

δ(τ3 − τ2)[n(r3), c
†(r2)] = δ(τ3 − τ2)c

†(r3){c(r3), c†(r2)}
= c†(r3)δ(r3 − r2). (4.39)

Plugging this back into Eq. (4.37), and using the definition of the finite-temperature Green’s function
G(r − r′) = −⟨T̂ c(r)c†(r′)⟩, we get

∂Λ0(r1, r2, r3)

∂τ3
=⟨T̂τ

∂n(r3)

τ3
c(r1)c

†(r2)⟩

δ(r1 − r3)G(r3 − r2)− δ(r2 − r3)G(r1 − r3). (4.40)

It would be useful if we rewrote the previous expression in the k-space, to make it easier to directly
use the charge conservation from Eq. (4.4). To do so, we first note that if we apply the following∫
dr1e

−ip(r1−r2)
∫
dr3e

−iq(r3−r2) to Eq. (4.5), we obtain ⟨T̂τjq(τ3)cp(τ1)c†p+q(τ2)⟩. This is easily seen,
but we demontrate it explicitly using the translational symmetry of the system

1

N2

∑
p,q

eiq(r3−r2)eip(r1−r2)⟨T̂τjµq(τ3)cp(τ1)c†p+q(τ2)⟩

=
1

N2

∑
p,q

eiq(r3−r2)eip(r1−r2)

×⟨
∑
r′3

e−iqr
′
3jµr′3

(τ3)
1√
N

∑
r′1

e−ir
′
1pcr′1(τ1)

1√
N

∑
r′2

eir
′
2(p+q)c†r′2

(τ2)⟩

=
1

N3

∑
r′1,r

′
2,r

′
3

⟨jµr′3(τ3)cr′1(τ1)c
†
r′2
(τ2)⟩

∑
p

eip(r1−r2−r′1+r′2)

︸ ︷︷ ︸
Nδr1+r′2,r

′
1+r2

∑
q

eiq(r3−r2−r′3+r′2)

︸ ︷︷ ︸
Nδr′2+r3,r2+r′3

=
1

N

∑
r′3

⟨jµr′3(τ3)cr1+r′3−r3(τ1)c
†
r′3+r2−r3

(τ2)⟩

=
1

N

∑
r′3

⟨jµr3cr1c†r2⟩

= Λµ(r1, r2, r3) (4.41)

Therefore, let us apply
∫
dr1e

−ip(r1−r2)
∫
dr3e

−iq(r3−r2) to both sides of Eq. (4.40). Before that, we
can use the translational invariance of the system, and set r2 = 0 everywhere. We get

∂

∂τ3
Λ0(p, τ1,p+ q, 0,q, τ3) =⟨T̂τ

∂nq(τ3)

∂τ3
cp(τ1)c

†
p+q(0)⟩

+ δ(τ1 − τ3)G(p+ q, τ1)− δ(τ3)G(p, τ1). (4.42)

Due to the Eq. (4.4), the first line on the right-hand side is

−∆(q) · Λ⃗(p, τ1,p+ q, 0,q, τ3).
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4.2 - Proof of the Ward Identity

Hence,

∂

∂τ3
Λ0(p, τ1,p+ q, 0,q, τ3) +∆(q) · Λ⃗(p, τ1,p+ q, 0,q, τ3) =

+ δ(τ1 − τ3)G(p+ q, τ1)− δ(τ3)G(p, τ1). (4.43)

On the left-hand side of the previous equation, we can use Eq. (4.11), to see the consequences of this
identity on the renormalized vertex function15. This will be the last piece needed for the proof of the
Ward identity.

4.2.7 Putting all the Pieces Together
Let us first express Λµ(r1, r2, r3) from Eq. (4.11) using the Green’s functions and renormalized vertex
function in the Fourier space, in order to make a connection with in Eq. (4.43) more easily.

Λµ(r1, r2, r3) =
∑
r′1,r

′
2

G(r1 − r′1)Γ
µ(r′1, r

′
2, r3)G(r

′
2 − r2)

=
1

(Nβ)4

∑
r′1,r

′
2

∑
p1

eip1(r1−r
′
1)G(p1)

×
∑
p2,q2

e−ip2(r
′
2−r′1)e−iq2(r3−r

′
1)Γµ(p2, p2 + q2)

×
∑
p3

eip3(r
′
2−r2)G(p3)

=
1

(Nβ)2

∑
p1,q2

G(p1)Γ
µ(p1 − q2, p1)G(p1 − q2)e

ip1r1e−iq2r3e−ir2(p1−q2) (4.44)

As before, we are free to set r2 = 0 due to the translational invariance, and we Fourier transform the
spacial part by applying

∫
dr1e

−ipr1
∫
dr3e

−iqr3 . We get

Λµ(p, τ1,p+ q, 0,q, τ3) =
1

β2

∑
iωp1 ,iωq2

G(p, iωp1)

× Γµ(p+ q, iωp1 − iωq2 ,p, iωp1)G(p+ q, iωp1 − iωq2)e
−iωp1τ1eiωq2τ3 . (4.45)

Using this, we can calculate the expression given by the left-hand side of Eq. (4.43), obtaining

∂

∂τ3
Λ0(p, τ1,p+ q, 0,q, τ3) +∆(q) · Λ⃗(p, τ1,p+ q, 0,q, τ3)

=
1

β2

∑
iωp1 ,iωq2

e−iωp1τ1eiωq2τ3G(p, iωp1)
[
iωq2Γ

0(p+ q, iωp1 − iωq2 ,p, iωp1)

+∆(q) · Γ⃗(p+ q, iωp1 − iωq2 ,p, iωp1)
]
G(p+ q, iωp1 − iωq2). (4.46)

Let us now equate right-hand sides of Eqs. (4.46) and (4.43), and apply∫ β
0
dτ1e

iωpτ1
∫ β
0
dτ3e

iωqτ3 to both sides. We get:

G(p+ q)−G(p) = G(p)∆µ(q)Γµ(p+ q, p)G(p+ q) (4.47)

If we divide both sides by G(p+ q) ·G(p)
G−1(p)−G−1(p+ q) = ∆µ(q)Γµ(p+ q, p) (4.48)

This completes the proof of the Ward identity.
15We note that we already proved that Γ̃ = Γ in Sec. 4.2.4.
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Remark 31. In the long wavelength limit q →, the Ward identity can be written as

G−1(p)−G−1(p+ q) = qµΓµ(p+ q, p) (4.49)

Remark 32. If make the substitutions q → −q, p→ p+ q, and multiply both sides by −1, we obtain
a Ward identity for Γµ(p+ q, p) instead of Γµ(p, p+ q)

G−1(p)−G−1(p+ q) = −∆µ(−q)Γµ(p, p+ q) (4.50)

4.3 Consequence of the Ward Identity
Let us now inspect some direct consequences of the Ward identity (4.3). For example, if we set q = 0
in Eq. (4.3), analytically continue the results to the real frequency axis, and use the Dyson equation,
we get the following expression for Γ0 that is diagonal with respect to momentum variables

Γ0(p, ωp + ωq;p, ωp) = 1− Σp(ωp + ωq)− Σp(ωp)

ωq
. (4.51)

One might raise the question of whether a similar expression could be derived for Γ⃗ as well. It turns
out that this is possible only if we impose some quite restrictive conditions.

Theorem 5. Let Γ0(p+ q, ωp + ωq;p, ωp) and Γ⃗(p+ q, ωp + ωq;p, ωp) be the density-density and
the current-current correlation functions16. If, in the long wavelength limit q ≈ 0, these functions are
analytic and Γ0(p+ q, ωp + ωq;p, ωp) is an even function of q, then the following relations hold

Γ⃗(p, ωp + ωq;p, ωp) = ∇pεp +∇pΣp(ωp + ωq). (4.52)

Here, Σp(ωp) is the self-energy of the system, while εp is the noninteracting dispersion relation.

Remark 33. The first term on the right-hand side of Eq. (4.52) is equal to the free current vertex in
the long wavelength limit, while the second term gives the contribution of vertex corrections.

Proof. Starting from the Ward identity (4.3), analytically continuing results to the real-frequency axis,
and using the Dyson equation we see that

∆µ(q)Γµ(p+ q, p) = G−1(p)−G−1(p+ q) = εp+q − εp + Σ(p+ q)− Σ(p)− ωq. (4.53)

In the long wavelength limit q → 0 we can approximate the right-hand side using

εp+q − εp ≈ q · ∇pεp,

Σ(p+ q) ≈ Σ(p, ωp + ωq) + q · ∇pΣ(p, ωp + ωq). (4.54)

On the other hand, the left hand side can be approximated as follows in the long wavelength limit
q → 0

∆µ(q)Γµ(p+ q, p) ≈ q · Γ⃗(p+ q, ωp + ωq,p, ωp)− ωqΓ
0(p+ q, ωp + ωq,p, ωp). (4.55)

Up to a linear order in q, using the fact that Γ0 is an even function of q, the previous expression can
be written as

∆µ(q)Γµ(p+ q, p) ≈ q · Γ⃗(p, ωp + ωq,p, ωp)− ωqΓ
0(p, ωp + ωq,p, ωp). (4.56)

16Here, we abandon the 4-vector notation and switch back to the usual representation where momenta and frequencies
are separated.
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4.3 - Consequence of the Ward Identity

Plugging this back into Eq. (4.53) and grouping the terms that are of zeroth and first order with respect
to q, we get

0 =
[
ωq − ωqΓ

0(p, ωp + ωq,p, ωp) + Σ(p, ωp)− Σ(p, ωp + ωq)
]

+q ·
[
Γ⃗(p, ωp + ωq,p, ωp)−∇pεp −∇pΣ(p, ωp + ωq)

]
(4.57)

Since q is arbitrary, we see that Eq. (4.52) directly follows from the previous line, which completes
the proof.

Another consequence of the Ward identity is that we can always find the diagonal components of the
renormalized vertex function

Theorem 6. The diagonal components of the renormalized vertex function are completely determined
by the self-energy of the system and read as

Γ⃗(p, ωp;p, ωp) = ∇pεp +∇pΣp(ωp),

Γ0(p, ωp;p, ωp) = 1− ∂ωpΣp(ωp) ≡
1

Z
.

(4.58)

Proof. Starting from Eq. (4.3), and expanding both sides to linear order in qµ, we straightforwardly
obtain Eq. (4.58).
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5
Vertex Corrections in the Holstein Model:

Analytical Considerations

5.1 Introduction
As discussed in Chapter 2, the mobility and the optical conductivity are completely determined by
the current-current correlation function, and the latter can be calculated directly using the Feynman
diagrams. In the case of the Holstein model, the first few of these diagrams are presented in Fig. 2.1,
while their physical meaning was discussed in Sec. 2.4. Using the procedure we reviewed in Sec. 2.4.2,
we calculated the charge mobility in Chapter 3, within the DMFT, CE, SCMA, and MA, by taking into
account only the diagram in Fig. 2.1(a), known as the bubble term. However, the question of vertex
corrections was not addressed at all. This is what we will do here and in the subsequent chapter. We
note that although the technical aspect of our work relies on the methodology that was worked out
in Refs. [1, 127], the results that we obtain about the vertex corrections in the Holstein model are an
original contribution that has yet to be published.

5.2 The Limit of Weak Electron-Phonon Coupling
In Parts I and II of this thesis, we saw that for sufficiently weak electron-phonon coupling strength
g, the single particle properties can be accurately described using only the (self-consistent) Migdal
approximation. Therefore, one might argue that we can select the most relevant diagrams in the
perturbative expansion of Fig. 2.1, where for the full fermion propagator we use the Green’s function
in the (SC)MA approximation, and as a result, obtain an accurate description of the transport properties
in the weak coupling limit. However, such analysis requires caution, as there are two questions that
one needs to address: i) which diagrams in Fig. 2.1 are the most relevant, that should be included in
our calculations? ii) can we guarantee that the approximations that we use are in accordance with the
Ward identity (see Chapter 4), i.e., with the conservation of electric charge? We will initially focus
on the second question, in the cases when the single-particle properties are described by the MA and
SCMA. These will be investigated in Secs. 5.2.1 and 5.2.2, respectively, where we will conclude that
for the Ward identity to be satisfied it is sufficient to take the bubble approximation, both in the MA
and SCMA case. Then, we will come back to the first question in Sec. 5.2.3, in the context of mobility.
We will find all Feynman diagrams that contribute in the leading order (with respect to g) to mobility
and prove that all of them are vanishing. This shows that there are no vertex corrections of mobility in
the weak coupling limit, and its accurate description can be obtained using the bubble approximation
within the SCMA.
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5.2 - The Limit of Weak Electron-Phonon Coupling

Figure 5.1: Renormalized vertex function Γµ needed for the Ward identity to be satisfied within the
Migdal approximation.

5.2.1 The Migdal Approximation and the Ward Identity
Let us now investigate which diagrams should be included in the vertex corrections, for the Ward
identity to be satisfied, if the single-particle properties are described using the Migdal approximation.
Starting from Eq. (4.3), we see that1

∆(q)µΓµ(p+ q, p) = G−1
MA(p)−G−1

MA(p+ q)

= ΣMA(p+ q)− ΣMA(p) + εp+q − εp − q0

≈ ΣMA(p+ q)− ΣMA(p) + ∆(q)µγµ(p+ q,p). (5.1)

In the last line we used the Ward identity for the free theory; see Eq. (C.125). Furthermore, using
Eq. (2.16) from Part I, we can express the self-energy in the Migdal approximation as2 ΣMA(p) =

− g2

Nβ

∑
kD(p− k)G0(k), where G0 is the free propagator. Hence

∆(q)µΓµ(p+ q, p) =− g2

Nβ

∑
k

[D(p+ q − k)G0(k)−D(p− k)G0(k)]

+ ∆(q)µγµ(p+ q,p). (5.2)

Using the substitution k → k + q in the first term, we get

∆(q)µΓµ(p+ q, p) =− g2

Nβ

∑
k

D(p− k) [G0(k + q)−G0(k)] + ∆(q)µγµ(p+ q,p)

=− g2

Nβ

∑
k

D(p− k)G0(k + q)G0(k)
[
G−1

0 (k)−G−1
0 (k + q)

]
+∆(q)µγµ(p+ q,p). (5.3)

If we once again use the Ward identity for the free theory (see Eq. (C.125)), on the terms in the square
bracket, the previous expression becomes

∆(q)µΓµ(p+ q, p) = ∆(q)µ
[
γµ(p+ q,p)− g2

Nβ

∑
k

D(p− k)

×G0(k + q)G0(k)γµ(k+ q,k)
]
. (5.4)

While this expression does not uniquely determine Γµ, we can nevertheless conclude that the solution

Γµ(p+ q, p) = γµ(p+ q,p)− g2

Nβ

∑
k

D(p− k)G0(k + q)G0(k)γµ(k+ q,k), (5.5)

1We use the standard four-notation; see Secs. C.7 and 4.1.
2The Feynman rules are given in Fig. 2.1 of Part I.
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is in accordance with the Ward identity. Diagrammatically, this Γµ can be represented as in Fig 5.1,
which corresponds to the diagrams for χjj shown in Figs. 2.1(a) and 2.1(b). The first term in Eq. (5.5)
is the free current vertex (it corresponds to the first term on the right-hand side of Fig 5.1 and to the
χjj diagram in Fig. 2.1(a)), while the second term is the vertex correction (it corresponds to the second
term on the right-hand side of Fig 5.1 and to the χjj diagram in Fig. 2.1(b)). In the long-wavelength
limit q → 0, the vertex correction term (i.e., the diagram in Fig. 2.1(b)) is not contributing, as seen
from

∝
∑
k

G(k, iωn)G(k, iωn + iωq)γi(k,k) = 0. (5.6)

The previous expression is zero since G(k) is an even function of momenta, γi(k,k) is odd, while
the phonon propagator does not depend on momenta at all. We note that this is only true in the long
wavelength limit q → 0. Otherwise, Eq. (5.6) would contain terms of the form G(k+ q), that would
not be even under the transformation k → −k. Therefore, the presented analysis proves that in the
long wavelength limit q → 0, the Ward identity is satisfied if the current-current correlation function
is calculated in the bubble approximation, while the single-particle properties are calculated in the
Migdal approximation.

5.2.2 The Self-Consistent Migdal Approximation and the Ward Identity
Let us now repeat our analysis, investigating which diagrams should be included in the vertex correc-
tions, for the Ward identity to be satisfied, if the single-particle properties are now described using
the self-consistent Migdal approximation. This is very similar to the Migdal approximation, which
we already thoroughly examined in Sec. 5.2.1. We again start from Eq. (4.3), this time in the case
Σ = ΣSCMA

∆(q)µΓµ(p+ q, p) = G−1
SCMA(p)−G−1

SCMA(p+ q)

= ΣSCMA(p+ q)− ΣSCMA(p) + ∆(q)µγµ(p+ q,p). (5.7)

In the SCMA, the self-energy is given by the Feynman diagram in Fig. 2.4(a) from Part II. Using the
Feynman rules, given in Fig. 2.1 from Part I, we see that it can be written as follows

ΣSCMA(p) = − g2

Nβ

∑
k

D(p− k)GSCMA(k). (5.8)

Since this is completely analogous to the expressions we had in Sec. 5.2.1, we deduce that Eq. (5.3),
upon substituting G0 → GSCMA, remains valid

∆(q)µΓµ(p+ q, p) = ∆(q)µγµ(p+ q,p)− g2

Nβ

∑
k

D(p− k)

×GSCMA(k + q)GSCMA(k)
[
G−1

SCMA(k)−G−1
SCMA(k + q)

]
. (5.9)

The terms in the square brackets can be written in terms of the renormalized vertex function, using the
Ward identity (see Eq. (4.3))

∆(q)µΓµ(p+ q, p) = ∆(q)µ
[
γµ(p+ q,p)− g2

Nβ

∑
k

D(p− k)

×GSCMA(k + q)GSCMA(k)Γµ(k + q, k)
]
. (5.10)
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Figure 5.2: Renormalized vertex function Γµ needed for the Ward identity to be satisfied within the
self-consistent Migdal approximation.

Thus, we can read off that the following solution for the renormalized vertex function is in accordance
with the Ward identity

Γµ(p+ q, p) = γµ(p+ q,p)− g2

Nβ

∑
k

D(p− k)GSCMA(k + q)GSCMA(k)Γµ(k + q, k). (5.11)

This is an equation for Γµ, which needs to be solved self-consistently. Diagrammatically, this Equation
can be represented as the first line in Fig. 5.2, while the second line represents the corresponding
solution, known as the ladder approximation, that is obtained by the iterative application of Eq. (5.11)
on itself. In terms of the diagrams for the current-current correlation function, it is represented as the
sum of diagrams in Figs. 2.1(a) and 2.1(b), as well as the higher order diagrams which are obtained by
adding vertical phonon lines that connect particle and hole propagators. Hence, within this approach,
the vertex corrections are determined by the ladder diagrams. However, each of these diagrams is
vanishing in the long-wavelength limit q → 0, as seen from

∝
∑
k

G(k, iωn)G(k, iωn + iωq)γi(k,k) = 0. (5.12)

This can be understood by noting that the phonon line in the Feynman diagram carries the momentum,
but the phonon propagator is actually momentum independent. Hence, we see that only the left current
vertex and the two fermion Green’s functions, which we see in the Figure above, depend on k. Since
the fermion Green’s functions are an even function of k, and the current vertex is odd, we conclude
that Eq. (5.12) must be vanishing due to the sum over k. This completes our analysis, which proves
that in the long wavelength limit q → 0, the Ward identity is satisfied if the current-current correlation
function is calculated in the bubble approximation, while the single-particle properties are calculated
in the self-consistent Migdal approximation.

Remark 34. In our analysis, we always restricted ourselves to the long wavelength case q ≈ 0.

5.2.3 Vertex Corrections of Mobility in the Weak Coupling Limit
Estimating the contribution of vertex corrections in the exact solution requires summing up all the
diagrams in the perturbative expansion (see Fig. 2.1), and comparing the obtained results to the one
we would obtain using only the bubble approximation. For some of these vertex correction diagrams,
we can immediately see that they are not contributing in the limit of long wavelengths q → 0. As we
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5.3 - Vertex Corrections in the Atomic Limit

have already seen, this was the case for the ladder diagrams, which turned out to be vanishing due
to the fact that the phonon propagator is momentum independent, while the Green’s function and the
free current vertex turned out to be even and odd, respectively, under the transformation k → −k. In
a completely analogous way, we can see that the diagram in Fig. 2.1(c), as well as its higher-order
counterparts (i.e., the ring diagrams), are also zero in the limit q → 0. Yet, evaluating other diagrams,
can be more complex. Luckily, since we are interested only in the mobility in the weak coupling
regime, it is not necessary to evaluate each of these diagrams exactly. Instead, for a given vertex
correction diagram, it is sufficient to take into account only the leading order term3, with respect to the
electron-phonon coupling strength, which scales as g−2 [1]. This significantly simplifies our analysis,
as the vast majority of diagrams are not contributing in the leading order ∼ g−2, and we thus need to
find only those that do. Let us now analyze the scaling, with respect to g, of different diagrams.

To accomplish this, let us first note that for sufficiently weak coupling, the spectral function and
its square can be approximated as in Eqs. (3.9) and (3.10), while the lifetime τk scales as g−2, as
seen from Eq. (3.45) of Part II. This implies that Ak ∼ g0 and A2

k ∼ g−2, which in conjunction
with Eq. (2.53) directly leads to the conclusion that the bubble term of mobility does in fact scale
as g−2, in the leading order. The vertex correction diagrams can be analyzed in a similar way, with
additional notes that: i) ReG ∼ g0 ii) the leading order term in (ReG)2 scales as g−2 iii) each phonon
propagator introduces a factor of D ∼ g2. Therefore, out of all vertex correction diagrams with n
phonon propagators, the leading order contribution (with respect to g) will be given by the ones in
which each of 2(n+ 1) fermion propagators has a pair with the same 4-momentum. A contribution of
such diagram would have the same scaling as the bubble term, since g2n ·g−2(n+1) ∼ g−2. However, all
such diagrams (ladder diagrams, ring diagrams) are vanishing. Hence, we conclude that there are no
vertex corrections to the mobility in the weak coupling limit of the Holstein model. Since the SCMA
gives an accurate single-particle description of the Holstein model in the weak coupling limit, and
since the bubble approximation within SCMA is in accordance with the Ward identity, we conclude
that the mobility in the weak coupling limit is accurately described using the bubble approximation
within SCMA.

5.3 Vertex Corrections in the Atomic Limit
Let us now investigate the importance of vertex corrections in the vicinity of the atomic limit (small
t0 ≈ 0). First we note that every Feynman diagram for the current-current correlation function has
two current vertices, and each of them is already proportional to t0. Thus, in the lowest order per-
turbation theory with respect to the hopping parameter t0, all the other elements of the Feynman
diagrams (fermion and phonon propagators) can be taken to be strictly at the atomic limit. Both of
these propagators are analytically known and are of course k independent at the atomic limit. As a
consequence, all the k dependence is in the current vertex, which is an odd function of k. Since the k
is summed over, we conclude that all vertex corrections are vanishing. The bubble part is nevertheless
still nonzero, as there there are two current vertices with same k, giving an overall even function,
which as a consequence does not vanish after the summation over k is performed.

3This is justified, since the mobility in the bubble approximation, in the weak coupling limit, as we will see in the text
below, also scales as g−2.
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6
Vertex Corrections in the Holstein Model:

Numerical Considerations

6.1 Introduction and Benchmarks
In the last chapter, we concluded that the vertex corrections of the mobility in the Holstein model are
vanishing in the weak coupling and atomic limits. However, so far, we do not know anything outside
of these two limiting cases. This is why we now continue our analysis by numerically examining
the significance of vertex corrections in a wide range of regimes. We note that in this chapter the
central quantity of our interest is the optical conductivity, which provides more information than
the mobility alone. The quality of our analysis is restricted by the quality of the results that we are
able to acquire for both exact optical conductivity, as well as the optical conductivity in the bubble
approximation. As detailed in Chapter 2, the calculation of exact optical conductivity can be reduced
to the calculation of the current-current correlation function. Nevertheless, this is highly nontrivial
to evaluate. Calculations on the imaginary axis are possible [50, 129], but analytic continuation to
the real axis presents a formidable obstacle. This is why real-time (or frequency) methods are often
preferred. One such method is the momentum-space hierarchical equations of motion (HEOM), which
was developed very recently by Janković [49]. Using HEOM, it is possible to obtain numerically
exact results for the current-current correlation function in the 1D Holstein model. This is currently
a state-of-the-art method that represents a natural generalization of the HEOM method that was used
for the calculation of single-particle properties; see Sec. 2.5.1 of Part II and Ref. [83].

On the other hand, using the fact that the DMFT neglects the vertex corrections (see Sec. 2.5 and
Ref. [122]), but gives very accurate spectral functions, we see that those can be used in Eq. (2.52) to
obtain practically exact results for the optical conductivity in the bubble approximation. Therefore, the
discrepancy between DMFT and HEOM results serves as a measure of the importance of the vertex
corrections.

Remark 35. One of the reasons why our analysis of vertex corrections is important is because in
contrast to model Hamiltonians, the numerically exact approaches are not possible in real materials,
and the calculation of the optical conductivity thus requires the use of approximate methods. The bub-
ble approximation is commonly employed, but the contribution of vertex corrections largely remains
unknown. In fact, even for model Hamiltonians, the contribution of vertex corrections in a wide range
of parameter regimes is often unknown, although some progress has been made [130]. We now have a
unique opportunity to gain some intuition about these questions in one particular system - the Holstein
model.

To obtain the DMFT results, we first use the algorithm from Fig. 1.2 of Part II to obtain the
self-energy and spectral functions, and then we calculate the optical conductivity normalized to the
concentration of charge carriers using Eq. (2.52). As for the numerical calculation of mobility (see
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6.2 - Optical Conductivity in the Weak Coupling Regime

Chapter 3), the exponential factor e−βω′ in Eq. (2.52) causes numerical instabilities, forcing us to
introduce negative frequency cutoff

∫∞
−∞ →

∫∞
−Λ

for the calculation of integrals. The calculation
is repeated for different values of parameter Λ, which is decreased until the results fully converge.
In addition, we also check that the results converge with respect to the number of k points used in
Eq. (2.52), which need to be large enough in order to faithfully represent the thermodynamic limit. If
the results have not fully converged, this can often be reflected in the optical sum rule (see Eq. (2.35))∫ ∞

−∞
dωµ(ω) =

π

N

∑
k

2t0 cos k

∫ ∞

−∞
dωAk(ω)e

−βω, (6.1)

which we also always check to be satisfied. The current-current correlation function on the real and
imaginary time axis is then obtained simply using Eqs. (2.20) and (2.21).

We note that, as for the single-particle properties (see Sec. 2.5.1 of Part II), the HEOM method
for the calculation of the current-current correlation function requires convergence with respect to two
parameters: the number of lattice sites N , and the maximum hierarchy depth D. However, numerical
problems arise if the electron-phonon coupling constant is too strong, if the temperature is too low, or
if the phonon frequency is too small.

In addition to HEOM, we also use the QMC method [129] to crosscheck our results. Within this
method, the current-current correlation function is calculated directly, on both the real and imaginary
time axis. However, in practice, it is not always possible to obtain these results for large enough times
t, required for the use of Eq. (2.11) and extraction of the optical conductivity. This is why the QMC
will only be used as a benchmark for the current-current correlation functions.

Remark 36. We note that Veljko Janković has not only developed the methodology for the HEOM
method, but has also generated all the data we will be using in this thesis as a benchmark. On the
other hand, the QMC data that we use were provided to us by Nenad Vukmirović and Suzana Miladić,
as a result of their joint work.

6.2 Optical Conductivity in the Weak Coupling Regime

In Chapter 5, we analytically proved that the vertex corrections of mobility are vanishing in the weak
coupling limit. Here, we use numerical calculations of the optical conductivity and the current-current
correlation function to support those findings. The results are shown in Fig. 6.1.

Remark 37. The optical conductivity will always be normalized to the concentration of charge carriers
ne, and such quantity will be denoted by µ(ω) (earlier this was sometimes denoted by µαα(ω)). This
will not always be emphasized, but it is nevertheless something one could guess, since we are working
in the limit ne → 0.

We see that the DMFT is in excellent agreement with HEOM and QMC benchmarks. In Fig. 6.1(b1),
there seems to be a tiny discrepancy between the HEOM and DMFT results. However, even this
difference is not due to the vertex corrections, but actually due to the finite-size effects. To prove this,
we implemented the DMFT on a lattice with a finite number of lattice sites N . The results are shown
in Fig. 6.2. As we see, the DMFT results for N = 160 (which is the same as used in HEOM; see
Table 6.1) are not fully converged, but they are on the verge of doing so. In addition, the difference
between the DMFT results for N = 160 and N = 300 looks very similar to the difference between
HEOM and DMFT in Fig. 6.1(b1). On the other hand, Fig. 6.2 demonstrates that N = 160 is sufficient
for the imaginary part of the current-current correlation function to converge. This is in accordance
with Fig. 6.1(c1). Thus, taking everything into account, we conclude that the discrepancy in Fig. 6.1(b1)
must be due to the finite-size effects.
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Figure 6.1: Optical conductivities and current-current correlation functions in real and imaginary
times in the weak coupling limit ω0 = 1, λ = 0.01. All quantities are normalized to the concentration
of charge carriers.

Table 6.1: Number of lattice sites N and the maximum hierarchy depth D that correspond to
HEOM/QMC results in Fig. 6.1.

Parameters NHEOM DHEOM NQMC

ω0 = 1 λ = 0.01 T = 1.0 160 2 60
ω0 = 1 λ = 0.01 T = 5.0 40 3 60
ω0 = 1 λ = 0.01 T = 10.0 40 3 60
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Figure 6.2: Finite-size effects in the current-current correlation function for ω0 = 1, λ = 0.01, and
T = 1.

6.3 Optical Conductivity for Intermediate and Strong Electron-
Phonon Coupling

The results for intermediate coupling are presented in Figs. 6.3 and 6.4, while the correspond-
ing values of HEOM/QMC chain lengths and maximum hierarchy depth are displayed in Table 6.2.
We observe that the vertex corrections are substantial for λ = 0.5 (see Figs. 6.3(a1)–6.3(a2)). A dis-
crepancy between the DMFT and HEOM/QMC results is also evident in Figs. 6.3(b1)–6.3(b2)) and
Figs. 6.3(c1)–6.3(c2)). However, the DMFT and QMC data for the imaginary-time current-current
correlation function are in very good agreement; see Figs. 6.3(d1)–6.3(d2)). Looking at it the other way
around, we conclude that a tiny change in the imagery axis data can lead to an enormous difference in
the real axis data. This demonstrates why it is extremely difficult to extract reliable information about
the optical conductivity from the data on the imaginary-time (or frequency) axis, and why real-time
(or frequency) methods are often preferred. From now on, we will not be showing any results of the
imaginary-time correlation functions.

For λ = 1 we observe that vertex corrections in µ(ω) are also considerable, but it seems that the
difference between DMFT and HEOM predictions is not as drastic for µ(ω = 0); see Figs. 6.4(a1)–
6.4(a2)). However, we should keep in mind that the temperature in both of these regimes is relatively
high, and that the comparison for lower temperatures cannot be performed due to the unavailability of
the HEOM results. In fact, in Fig. 6.3 we could observe that although HEOM predicted a huge correc-
tion for µDMFT(ω = 0) at T = 1, the relative difference between µDMFT(ω = 0) and µHEOM(ω = 0)
was drastically reduced at T = 10. Another interesting feature that we point out is that vertex cor-
rections can both increase and decrease the bubble mobility: µHEOM(ω = 0) > µDMFT(ω = 0) at
Fig. 6.4(a1), while µDMFT(ω = 0) > µHEOM(ω = 0) at Fig. 6.4(a2).

An analysis that we have now presented unfortunately cannot be easily repeated in the case of
strong electron-phonon coupling λ = 2, as the HEOM data are not available. Therefore, we only
present the DMFT and QMC results in Fig. 6.5. We see that while the DMFT is in agreement with
QMC for small t, the difference between these methods can be observed for larger times. However, it is
hard to quantitatively estimate the significance of vertex corrections in this case for µ(ω), as accurate
QMC results are not available for long enough times.
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Figure 6.3: Optical conductivities and current-current correlation functions in real and imaginary
times in the intermediate coupling regime ω0 = 1.0, λ = 0.5. All quantities are normalized to the
concentration of charge carriers.
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Figure 6.4: Optical conductivities and real-time current-current correlation functions in the intermedi-
ate coupling regime ω0 = 1.0, λ = 1.0. All quantities are normalized to the concentration of charge
carriers.

Table 6.2: Number of lattice sites N and the maximum hierarchy depth D that correspond to
HEOM/QMC results in Figs. 6.3 and 6.4.

Parameters NHEOM DHEOM NQMC

ω0 = 1 λ = 0.5 T = 1.0 13 6 10
ω0 = 1 λ = 0.5 T = 10.0 5 21 10
ω0 = 1 λ = 1.0 T = 2.0 7 12 7
ω0 = 1 λ = 1.0 T = 10.0 7 12 7

164



6.3 - Optical Conductivity for Intermediate and Strong Electron-Phonon Coupling

0 10 20
0.00

0.05

0.10

0.15

(
)

DMFT( = 0) = 0.173

(a1)

0 10 20 30 40 50
0.00

0.01

0.02

DMFT( = 0) = 0.021

(a2)

0.0 0.5 1.0 1.5 2.0
t

0

1

2

j(t
)j(

0)
/n

e

(b1)DMFT
QMC bubble
QMC

0.0 0.5 1.0 1.5 2.0
t

0

1

2
0 = 1

  = 2
(b2)

0.0 0.5 1.0 1.5 2.0
t

1.5

1.0

0.5

0.0

j(t
)j(

0)
/n

e

(c1)

0.0 0.5 1.0 1.5 2.0
t

0.6

0.4

0.2

0.0

0.2(c2)

T = 1.0 T = 10.0

Figure 6.5: Optical conductivities and real-time current-current correlation functions in the strong
coupling regime ω0 = 1.0, λ = 2.0. All quantities are normalized to the concentration of charge
carriers. Here, NQMC = 10.
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6.4 Optical Conductivity Close to the Adiabatic Limit
Let us now investigate the optical conductivity close to the adiabatic limit (i.e., the case when ω0 is
small). In this regime, the constituents of crystal lattice1 oscillate slowly around their equilibrium
position, causing the electron to observe a disordered system on a short timescale t ≲ ω−1

0 . However,
this is a dynamical disorder. As a consequence, there is no Anderson localization, and the electrons’
motion starts being diffusive for large times t ≫ ω−1

0 . This is relevant for the study of organic
semiconductors, as the oscillations of their composing molecules are slow due to their large masses
and weak restoring Van der Waals forces. The mobility in these systems is described using the so-called
transient localization scenario [124] that takes into account both the short- and long-time behavior of
electrons. Although an interesting idea for future work, we will not apply the transient localization
scenario in our analysis, but will instead focus on the behavior of the system at timescales2 t ≲ ω−1

0 ,
which can be described using only the static disorder. Therefore, our description of optical conductivity
will be inadequate for ω ≲ ω0 (we will get Anderson insulator for ω = 0), but the predictions for
ω ≳ ω0 will be quite reliable. This will hopefully enable us to reproduce one of the characteristic
features, which is the finite frequency peak in optical conductivity (also called the displaced Drude
peak) [49, 124]. This will be an important crosscheck for HEOM results.

6.4.1 Replacing Phonons with Static Disorder
From the electron’s point of view, the molecules constituting the crystal lattice look like a static
disorder on short timescales t ≲ ω−1

0 , because they are displaced from their equilibrium positions,
but do not have enough time to move. Stated more formally, in this case, it is possible to remove
the phonons from the Hamiltonian, and replace them with a single particle random potential that is
diagonal in the coordinate space. This can be seen by rewriting the interaction term of the Hamiltonian
as follows

Hel−ph = −g
∑
i

(ai + a†i )ni = −g
√
2ω0

∑
i

Xini, (6.2)

where ni = c†ici, while Xi is the coordinate operator of i-th molecule. In the case we are consider-
ing t ≲ ω−1

0 , the operator Xi in Eq. (6.2) can be treated classically by replacing it with a random
variable with an appropriate probability distribution p(x). Then, the calculation of arbitrary quantity
requires repeating the calculation for many different classical realizations Xi (taken from probability
distribution p(x)), and averaging the end result.

Since we are working in the limit of vanishing electron concentration, p(x) is actually solely
determined by the phononic part of the Hamiltonian

Hph = ω0a
†a, (6.3)

and is thus given by

p(x) =
1

Zp

∞∑
n=0

e−βnω0|⟨x|ψn⟩|2 =
1

Zp

⟨x|
∞∑
n=0

e−βnω0|ψn⟩⟨ψn︸ ︷︷ ︸
≡e−βH

|x⟩ = 1

Zp

⟨x|e−βHph |x⟩, (6.4)

where Zp is the partition function and ψn are the eigenstates of Eq. (6.3) (i.e., they are Hermite
functions). From Eq. (6.4) we see that p(x) is just a density matrix of the harmonic oscillator in
coordinate representation, which can be found in many books [131–133]. We follow along Ref [131],
and formulate:

1In the remaining part of this chapter, the constituents of crystal lattice will be simply referred to as molecules (as it is
the case for organic semiconductors).

2In the Fourier space, this corresponds to frequencies ω ≳ ω0.
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Theorem 7. The probability distribution p(x) is a Gaussian

p(x) =
1

σ
√
2π
e−

x2

2σ2 , σ2 =
1

2ω0

cth

(
βω0

2

)
. (6.5)

Proof. We start from Eq. (6.3), and drop the term 1
Zp

, which is justified as long as we normalize
p(x) at the end of the calculation. Since p(x) is no longer normalized, it does not provide any useful
information for a single value of x. This is why we want to examine its value when we vary the
argument, i.e. p(x+ dx). It can be expressed using the momentum operator P as follows

p(x+ dx) = ⟨x+ dx|e−βHph |x+ dx⟩ = p(x) + idx⟨x|
[
P, eβHph

]
|x⟩. (6.6)

This was obtained using the fact that the momentum operator is the generator of the translations

|x+ dx⟩ = e−idxP |x⟩ ≈ (1− idxP ) |x⟩. (6.7)

Our task is thus reduced to the calculation of the second term in Eq. (6.6). This could be easily
accomplished if there was the coordinate operator instead of the momentum operator in Eq. (6.6)
(since X acts trivially on |x⟩). In that sense, the following lemma practically solves our problem:

Lemma 3. The following relation always holds

[
P, e−βHph

]
= iω0{X, e−βHph} th

(
βω0

2

)
, (6.8)

where {, } is the anticommutator.

Proof. Since P ∝ a− a†, it is useful to examine what happens if we try to commute a (and a†) with
e−βHph = e−βω0a†a. This is facilitated using the famous Baker–Campbell–Hausdorff formula

eBAe−B = A+ [B,A] +
1

2!
[B, [B,A]] + . . . . (6.9)

giving:

e−βω0a†aaeβω0a†a = a− βω0[a
†a, a] +

β2ω2
0

2!
[a†a, [a†a, a]] + · · · = aeβω0 . (6.10)

Hence:
e−βω0a†aa = eβω0ae−βω0a†a, (6.11a)

and analogously
e−βω0a†aa† = e−βω0a†e−βω0a†a. (6.11b)

We would now like to add/subtract these two equations and somehow get the terms proportional to
a− a†, giving momentum operator, and terms proportional to a+ a†, giving coordinate operator. This
can be accomplished by writing the exponential eβω0 as

eβω0 =
1 + x

1− x
=⇒ x = th

(
βω0

2

)
(6.12)

Eqs. (6.11a) and (6.11b) become:[
1− th

(
βω0

2

)]
e−βω0a†a a =

[
1 + th

(
βω0

2

)]
a e−βω0a†a (6.13a)[

1 + th

(
βω0

2

)]
e−βω0a†a a† =

[
1− th

(
βω0

2

)]
a† e−βω0a†a (6.13b)
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Subtracting Eq. (6.13b) from Eq. (6.13a) and simplifying the obtained expression, we get

[a− a†, e−βH ] = −{a+ a†, e−βH}th
(
βω0

2

)
. (6.14)

Multiplying both sides with −i
√

ω0

2
we finally obtain[

P, e−βH
]
= iω0{X, e−βH} th

(
βω0

2

)
, (6.15)

which proves the lemma.

Let us now continue the proof of Theorem 7, and go back to Eq. (6.6)

dp(x)

dx
= −ω0th

(
βω0

2

)
⟨x|{X, e−βH}|x⟩ = −2ω0th

(
βω0

2

)
x p(x). (6.16)

This is a simple differential equation whose solution is exactly the Gaussian in Eq. (6.5). This com-
pletes our proof.

Therefore, we conclude that in the case we are considering, the electron-phonon interaction can be
replaced with an interaction of the form

Hint →
∑
i

εini; εi = −g
√
2ω0Xi. (6.17)

where Xi can now be understood as a classical random variable with a probability distribution that
is given in Eq. (6.5). To make this even more simple, εi can also be regarded as a random variable
with the appropriate distribution. Since the distribution of X is given by the Gaussian (see Eq. (6.5)),
we conclude that ε will also have a Gaussian distribution, centered around zero, with the following
variance

σ2
ε ≡ Var [ε] = 2ω0g

2Var [X] = g2cth

(
βω0

2

)
= 2g2

(
1

2
+

1

eβω0 − 1

)
. (6.18)

Hence, the probability distribution for ε is given by:

pε(ε) =
1

σε
√
2π
e
− ε2

2σ2
ε . (6.19)

6.4.2 Anderson Approach
So far, we have seen that for the short-time dynamics, the electron-phonon interaction term in the
Hamiltonian can replaced by Eq. (6.17), where εi is the random variable with a probability distribution
given by Eq. (6.19). Hence, the phonons are completely removed from the picture, and the total
Hamiltonian is given by

H = −t0
∑
i

(
c†ici+1 +H.c.

)
+
∑
i

εini. (6.20)

In the case when there is only N lattice sites in the system, the Hamiltonian can be written in the
following matrix form

H =



ε0 −t0 0 0 . . . 0 0 0 −t0
−t0 ε1 −t0 0 . . . 0 0 0 0
0 −t0 ε1 −t0 . . . 0 0 0 0
0 0 −t0 ε2 . . . 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 . . . εN−4 −t0 0 0
0 0 0 0 . . . −t0 εN−3 −t0 0
0 0 0 0 . . . 0 −t0 εN−2 t0

−t0 0 0 0 . . . 0 0 −t0 εN−1


, (6.21)
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where the periodic boundary conditions were assumed. The most straightforward way to solve this is
to simply use the exact diagonalization. As a result, we would get eigenvectors |n⟩ and eigenvalues
En that can be used to obtain the optical conductivity from Eq. (2.18) as follows3

Reσ(ω) =
N

2ω

∫ ∞

−∞
dteiωt [⟨j(t)j⟩ − ⟨jj(t)⟩]

=
N

2ω

∫ ∞

−∞
dteiωt

1

Z
∑
n

e−βEn [⟨n|j(t)1j|n⟩ − ⟨n|j1j(t)|n⟩] , (6.22)

where 1 is the identity operator and Z =
∑

n e
−βEn is the partition function. If we now expand the

identity operator as 1 =
∑

m |m⟩⟨m|, we get

Reσ(ω) =
N

2ω

∫ ∞

−∞
dt
eiωt

Z
∑
n,m

|⟨n|j|m⟩|2
(
eit(En−Em) − e−it(En−Em)

)
e−βEn

=
N

2ωZ
∑
n,m

[
e−βEn − e−βEm

]
|⟨n|j|m⟩|2

∫ ∞

−∞
dteit(ω+En−Em)

=
Nπ

ωZ
∑
n,m

|⟨n|j|m⟩|2
[
e−βEn − e−βEm

]
δ(ω − Em + En). (6.23)

In this case, the concentration of electrons is 1/N , implying that

µ(ω) =
π

ωZ
∑
n,m

|⟨n|Nj|m⟩|2
[
e−βEn − e−βEm

]
δ(ω − Em + En)., (6.24)

where the matrix element is easily calculated using Eq. (C.34). As we already emphasized, within this
approach we should be able to reproduce the displaced Drude peak. However, this method is not able
to correctly reproduce µ(ω) for ω ≲ ω0, and it incorrectly gives an Anderson insulator for µ(ω = 0).

Remark 38. From Eq. (6.24), we see that µ(ω) is given as a series of Dirac delta peaks. Therefore, to
plot this quantity we will always use a Lorentzian representation of delta functions with some small
half-width η. However, we note that broadening η is only used for plotting, whereas all calculations
are performed exactly (within this method).

6.4.3 Coherent Potential Approximation
Before we move on to the results, let us first note that the same DMFT procedure we reviewed in
Chapter 1 of Part II, can be also applied to the Hamiltonian with disorder in Eq. (6.20), instead of
the full Holstein Hamiltonian. This constitutes the so-called coherent potential approximation (CPA).
The advantage of CPA is that its application is not restricted to the Holstein model, but can also be
applied to much more general systems. However, it does not take into account the vertex corrections.
Nevertheless, this technique was widely used for the study of disordered systems [134]. Now, we have
a unique opportunity to quantitatively examine the reliability of this method in one particular model,
the Holstein model, by comparing its predictions for the optical conductivity with the DMFT, which
calculates the bubble term almost exactly.

In practice, the CPA is, in our case, applied as follows: We start with an initial guess4 for the self-
energy Σ(ω), calculate the local Green’s function G(ω) using5 Eq. (1.108) from Part II, and obtain
G0(ω) from the Dyson equation

G0(ω)
−1 = G(ω)−1 + Σ(ω). (6.25)

3We already set the lattice constant to unity, so we can freely interchange V ↔ N .
4The algorithm is so stable that we can practically use any function as an initial guess.
5This is the local Green’s function for the 1D case.
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6.4 - Optical Conductivity Close to the Adiabatic Limit

Then, we find the impurity Green’s function Gimp, which is actually just a resolvent 1/(G0(ω)
−1 − ε)

that needs to be averaged over the many different realizations of the random variable ε, with a proba-
bility distribution that we derived in Eq. (6.19)

Gimp(ω) =
〈(
G0(ω)

−1 − ε
)−1
〉
=

∫ ∞

−∞
dε

pε(ε)

G0(ω)−1 − ε

=
1

σε

√
π

2
e
− 1

2σ2
εG0(ω)2

[
−i+ erfi

(
1√

2σεG0(ω)

)]
, (6.26)

where erfi is the imaginary error function. The self-energy in the next iteration is obtained by again
using the Dyson equation

Σ(ω) = G−1
0 (ω)−G−1

imp(ω), (6.27)

which closes the loop. This is now repeated until the condition for convergence Gimp(ω) = G(ω) is
reached (up to some predefined accuracy). As a result, we obtain the self-energy that can now be used
to calculate the spectral function as

Ak(ω) = − 1

π
Im

1

ω − Σ(ω)− εk
, (6.28)

and also the optical conductivity and current-current correlation functions using Eqs. (2.52) and (2.11),
respectively.

Remark 39. The self-energy in the CPA method is, analogous to the DMFT, k-independent.

6.4.4 Numerical Results
The numerical results for optical conductivity and current-current correlation function in the regime
ω0 = 1/3 are presented in Fig. 6.6, while the numerical parameters for HEOM are displayed in
Table 6.3. In panels 6.6(a1)–6.6(a2) we see that the contribution of vertex corrections is substantial
(compare HEOM and DMFT). We also observe that in constrast to Fig. 6.3(a1), where µHEOM(ω = 0)
was significantly larger than µDMFT(ω = 0) for low temperature regime, here the roles are reversed.

While the vertex corrections are responsible for the difference between the predictions of the
DMFT/CPA and HEOM/Anderson, let us now compare the methods within each of these categories
separately. We see a remarkable agreement between DMFT and CPA. Of course, the CPA method by
construction cannot capture the vertex corrections, but apart from that, despite being simple, displays
the far-reaching capabilities for the calculation of the optical conductivity in the bubble approximation.
Although we show the results for only two different temperatures in Fig. 6.6, we actually conducted
comparisons in a wide range of electron-phonon couplings and temperatures, and we always found an
excellent agreement between DMFT and CPA. We note that one of the known shortcomings of CPA
is the fact that it cannot predict an insulating behavior µAnderson(ω = 0) = 0. However, this is actually
better in our case, since we are dealing with dynamic, instead of static, disorder.

A good agreement can also be observed between HEOM and Anderson approach, as the latter
is capable of capturing the most prominent feature of the spectrum - the displaced Drude peak. The
only significant discrepency between Anderson and HEOM can be observed ω ≲ ω0, where we
know that Anderson approach gives incorrect predictions due to the fact that it does not take into
account the dynamical motion of molecules. We note that due to Anderson localization we should
get µAnderson(ω = 0) = 0, but the results in Figs. 6.6(a1)–6.6(a2) suggest otherwise. The reason for
this apparent contradiction lies in the fact that we used artificial broadening for plotting the Anderson
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Figure 6.6: Optical conductivities and real-time current-current correlation functions in the regime
close to the adiabatic limit ω0 = 1/3, λ = 1. All quantities are normalized to the concentration of
charge carriers. In panels (a) and (b), we use the Lorentzian broadening with half-width η = 0.05 for
Anderson results.

Table 6.3: Number of lattice sites N and the maximum hierarchy depth D that correspond to HEOM
results in Figs 6.6.

Parameters NHEOM DHEOM

ω0 = 1/3 λ = 1 T = 1 7 12
ω0 = 1/3 λ = 1 T = 5 6 15

171



6.5 - Optical Conductivity in the Regimes where the Phonon Frequency is Large

results in Figs. 6.6(a1)–6.6, by replacing the Dirac delta functions in Eq. (6.24) with their Lorentzian
representations. This was avoided in the case of the current-current correlation functions, which were
calculated using a formula that is obtained by plugging Eq. (6.24) into Eq. (2.20)

1

ne
⟨j(t)j⟩ = 1

Z
∑
m,n

e−it(Em−En)e−βEn|⟨n|Nj|m⟩|2. (6.29)

In this expression there are no delta functions, so no broadening was needed. In accordance to the
results for µ(ω), we see that HEOM and Anderson are in agreement for small times; see Figs. 6.6(b1)–
6.6(b2) and Figs. 6.6(c1)–6.6(c2).

6.5 Optical Conductivity in the Regimes where the Phonon Fre-
quency is Large

Since the HEOM data are here largely unavailable, and also since we already gave a thorough analysis
of the vertex corrections in other regimes, we just present the results in Fig. 6.7 without further
discussion.
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Figure 6.7: Optical conductivities, normalized to the concentration of charge carriers, close to the
antiadiabatic limit ω0 = 3.
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Table 6.4: Number of lattice sites N and the maximum hierarchy depth D that correspond to the
HEOM results in Fig. 6.7.

Parameters NHEOM DHEOM

ω0 = 3 λ = 0.5 T = 2.0 10 8
ω0 = 3 λ = 0.5 T = 5.0 7 12
ω0 = 3 λ = 0.5 T = 10.0 5 19
ω0 = 3 λ = 1.0 T = 5.0 7 12
ω0 = 3 λ = 1.0 T = 10.0 5 21
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In this thesis, we gave a comprehensive study of single particle and transport properties of the
Holstein model, which was introduced in Part I. Part II was devoted solely to the single particle
properties, or more specifically to the calculation of quantities such as effective mass, ground state
energy, spectral functions, and correlation functions in imaginary time, using different methods. For
this purpose, in Chapter 1 we reviewed the dynamical mean field theory and showed how this method
can be applied to the Holstein model in a stable and numerically inexpensive way. Since the impurity
problem was already solved analytically in Ref. [56], in terms of the continued fraction expansion, the
stability of the DMFT algorithm (see Fig. 1.2) rested upon our ability to accurately evaluate the local
Green’s function on a real frequency axis. As this cannot be done using a straightforward trapezoid
integration due to the strong numerical instabilities, we developed a numerical scheme that solves this
problem in Sec. 1.8. In addition, we showed that the local Green’s function can actually be evaluated
analytically in 1D and 2D cases with nearest neighbor hopping. As a result, in these cases, we obtained
that a single iteration of the DMFT algorithm in Fig. 1.2 has an analytic solution. Having in mind that
a convergence of a DMFT loop in a typical (not too extreme) regime requires only on the order of 10
iterations, it is clear how incredibly numerically cheap this method really is.

The numerical efficiency and stability of the DMFT became important only after we have con-
cluded that this method gives accurate and reliable predictions in the Holstein model, irrespective of
the parameter regime. This was established in Chapter 2. To be more precise, we observed a remark-
able agreement between the DMFT predictions and the best available results in the literature for the
effective mass, the ground state energy, and the spectral functions, which were calculated for weak,
intermediate, and strong electron-phonon coupling strength coupling, as well as close to the atomic
limit. In addition, we calculated the first nine spectral sum rules exactly, and numerically checked
that DMFT satisfies all of them. We also showcased the superiority of the DMFT compared to the
(self-consistent) Migdal approximation, which is a commonly used method. Comparisons of the imag-
inary time correlation functions between various methods were also conducted. However, we saw
that it is very hard to draw conclusions from the imaginary axis data, as even a tiny difference in the
imaginary axis correlation functions can correspond to substantial differences in spectral functions.
All our findings from Chapter 2 can be summarized by saying that DMFT provides approximate, but
exceptionally accurate and numerically cheap results for the single-particle properties of the Holstein
model.

Our results now establish the DMFT as one of the best benchmarks for the Holstein model, against
which other methods can be tested. One such method is the (second-order) CE method, which was
examined in Chapter 3. CE is increasingly popular because it can be easily applied to different models
and to real materials as well. This is why it was important to examine its range of validity, which
we did using the Holstein model as a testing ground. In our comprehensive analysis, we applied
the CE method in a broad temperature range for three phonon frequencies ω0/t0 = 0.2, 0.5 and 1,
covering regimes from weak to strong electron-phonon couplings. We mostly focused on the 1D
system in the thermodynamic limit, but some of the results were shown also in 2D and 3D. To
avoid numerical instabilities and to reach high numerical precision, we derived a number of analytical
expressions and we used the Levin’s collocation method in calculations of the cumulant, as well as an
interpolation scheme for the Fourier transform in corresponding calculations of the spectral functions.
The quasiparticle properties and spectral functions were shown in comparison to the DMFT and SCMA
results.

We observed that at weak coupling (roughly corresponding to m0/m
∗ ≳ 0.9) CE, DMFT, and

SCMA give very similar spectral functions. Most of the spectral weight for k = 0 is in the quasiparticle
peak, while a small satellite is rather well reproduced in all three methods. As the interaction increases,
a clear difference in the spectral functions emerges. Nevertheless, the positions of the CE and DMFT
quasiparticle and the first satellite peak at low temperatures are in rather good agreement. Furthermore,
the overall spectral weight distribution is in a decent agreement even though the satellite peaks are
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more pronounced in DMFT for stronger electron-phonon coupling. Roughly speaking, there is a decent
agreement in 1D up to the interactions corresponding to m0/m

∗ ∼ 0.5. Interestingly, the agreement
between the CE and DMFT spectral functions persists also for k = π, although CE does not capture a
tiny quasiparticle peak. In this case, the DMFT spectral weight almost merges to a single broad peak.
We note that the disagreement between the predictions of the CE and the reliable benchmark that was
observed in Ref. [116] for k = π, is solely due to considering a lattice of finite N = 6 size [87],
while our results demonstrate that those discrepancies are significantly reduced in the thermodynamic
limit N → ∞. However, the deviation of CE from the exact solution is most obvious for intermediate
momenta where the CE solution merges to a single peak, while the satellite structure is seen in DMFT.
At high temperatures, the CE gives decent results, much better than the SCMA, and one might suspect
that the CE would be exact in the limit T → ∞. However, this is not the case as we proved using
the spectral sum rules. It turns out that the CE gives the exact spectral moments only up to the order
n = 4, while it incorrectly predicts the prefactor in the leading order term (with respect to T , when
T → ∞) for n = 5.

For a correct interpretation of the results that we obtained in Chapter 3, we always need to keep
in mind the potential of our methods for the application in other models and real materials. CE and
MA are both relatively simple and inexpensive to apply, which is why the comparison between these
two methods seems the most fair. Although the DMFT appears computationally superior to CE, we
note that the numerical efficiency that we achieved with DMFT is restricted to the Holstein model.
For predicting the properties of real materials, CE remains numerically cheap, while the required
numerical resources for the application of the DMFT are vastly increased. In addition, the issue of
nonlocal correlations may also emerge. Nevertheless, DMFT is very useful as a reliable benchmark in
the Holstein model, as it can be used as a judge, to decide which of the other methods performs the best.
Having this in mind, our results readily demonstrated that CE is vastly superior to MA. Furthermore,
we also obtained that the CE gives slightly better results than the self-consistent MA (i.e., the SCMA),
despite the fact that the CE does not require any self-consistent calculations. Of course, for a definitive
answer on the range of validity of CE in connection with ab initio calculations, one needs to perform
a similar analysis for both the Fröhlich model and for other models as well, which can be used for a
realistic description of the electronic spectra and charge transport in real materials. A useful hint in
this direction is provided by Ref. [112] which shows that the CE, around the bottom of the band, gives
promising results for the spectral function even in the case when the phonons have a dispersion [135].

In Part III of this thesis, we provided an in-depth study of transport properties in the Holstein model.
In particular, we concentrated on the study of optical conductivity, normalized to the concentration of
charge carriers µ(ω), and a DC version of this quantity, i.e., the mobility µ ≡ µ(ω = 0). Both of these
were calculated using the linear response theory. Within this formalism, µ(ω) is naturally written as
a sum of the so-called bubble term, which is completely determined by the single-particle properties,
while the remaining contribution is known as the vertex corrections. In practice, the vertex corrections
are notoriously hard to calculate, which is why the bubble approximation is usually employed in real
materials. This is why it is of paramount importance to understand both the capabilities of different
methods to produce accurate results in the bubble approximation, as well as the importance of vertex
corrections, which are usually neglected without justification. Our goal was to answer these questions
on one particular example - the Holstein model.

Since the single-particle properties were already well studied in Part II, we used them in Chapter 3
of Part III to calculate the mobility using the DMFT, CE, SCMA, and MA. As before, the DMFT was
used as a benchmark, which is justified due to its excellent capabilities for accurately predicting the
spectral functions, as we already discussed. The agreement between DMFT and CE was quite good.
This is the case even for stronger electron-phonon couplings, where the CE indicated that it is capable
of capturing non-monotonic behavior of µ(T ), with a region of increasing mobility with temperature,
which is usually assigned to hopping conduction in phenomenological theories. For strong electron-
phonon coupling, the CE mobility results were obtained only for T ≳ t0, since a very small numerical
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noise at frequencies ω ≪ Ep affects a precise calculation of mobility at lower temperatures. While
it would be ambitious to expect that the CE would continue to produce reliable results even for low-
temperature mobility in the strong coupling case, this method nevertheless produced quality results
well beyond the regimes where we would expect a perturbative method to be trustworthy. This was not
the case for the SCMA and MA, which were clearly worse. However, we note that SCMA provided a
significant improvement to the mobility predictions of MA. For high temperatures, we observed that
the temperature dependence of mobility within CE, DMFT, and SCMA assumed a universal form:
for weak electron-phonon coupling µ ∝ T−2, while for somewhat stronger coupling µ ∝ T−3/2.
These high-temperature limits were also obtained analytically within the CE. While one might find it
surprising that the CE was able to produce any meaningful results for µ, due to its inability to correctly
capture the spectral functions for k ̸≈ 0 and k ̸≈ π, we note that k ≈ 0 are actually giving the largest
contribution for µ in the case of small concentration of charge carriers, which we are considering. To
summarize, we argue that the CE will be most useful in calculations of charge mobility, as has already
been done in ab initio calculations for SrTiO3 [98] and naphthalene [99].

This analysis would not be complete without examining the contribution of the vertex corrections.
In Chapter 5, we analytically proved that the vertex corrections of mobility are actually vanishing
in the weak coupling and atomic limits of the Holstein model. In all other regimes, we numerically
studied the vertex corrections of optical conductivity, by comparing the bubble approximation results,
obtained using the DMFT, and the numerically exact predictions of the hierarchical equations of
motion (HEOM) method, which which we took from the literature. The discrepancy between these
results determined the significance of the vertex corrections. Our numerical results explicitly showed
that while the vertex corrections for small electron-phonon coupling strengths are vanishing, there are
substantial vertex corrections in both the intermediate coupling and near-adiabatic regimes. In addition,
we saw that these vertex corrections can lead to an increase in mobility (compared to the bubble result)
in some regimes, while leading to a decrease in other regimes. While a natural continuation of this line
of research would be to repeat this analysis in the Fröhlich model, we note that the Holstein model
currently stands as a unique electron-phonon model where such an in-depth study, that we presented,
was possible. Another way, which is actually within our reach, to build upon these results is to study
the near-adiabatic regime more deeply, where the so-called displaced Drude peak is observed both in
HEOM solution and in the Anderson approach. This suggests that the transient localization theory
[124] would produce interesting results. We leave this for our future work.
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Appendix A - Numerical Fourier Transform of Green’s functions

A
Numerical Fourier Transform of Green’s functions

In this section, we will show how to do numerical Fourier transform and inverse Fourier transform of
the Green’s functions using the FFT algorithm.

A.1 Transform G(t) → G(ω)

At first glance, this seems to be pretty straightforward. However, the problem arises because the
Riemann approximation

G(ω) =

∫ ∞

−∞
dtG(t)eiωt ≈ ∆t

∑
n

G(tn)e
iωtn , (A.1)

fails for large ω. Namely, no matter how small1 ∆t is, for large enough ω, the "integrand" will make
several oscillations in the interval (tn, tn +∆t). In order to overcome these difficulties, we use some
kind of interpolation scheme for the Green’s function and integrate analytically. This idea originated
from Ref. [123], and we here review the main ideas from that reference.

It is not advisable to use ordinary Lagrange interpolating polynomial

G(t) =
N−1∑
i=0

G(ti)
∏
j ̸=i

t− tj
ti − tj

, (A.2)

not only because it is highly impractical (since the order of polynomialN is so large2), but also because
high-degree polynomials have a notorious ability to “wiggle”, thus potentially producing serious errors.
Instead, we will use a piecewise polynomial which will be obtained by using the interpolation on only
a few nearest points. In the cubic case, which we will examine, we need four nearest points. Two of
those points are located on the left (from the point t we are examining), whereas the other two points
are on the right, if the point t is not located in the first (t0, t1) or in the last sub-interval (tN−2, tN−1).
Otherwise, we are forced to take one point on one side and three on the other. This will cause some
complication as we will see.

Notice that Lagrange interpolation polynomial in Eq. (A.2) is linear in G(ti). In fact G(ti) is
multiplied by∏

j ̸=i

t− tj
ti − tj

=
∏
j ̸=i

t− ti + ti − tj
ti − tj

=
∏
j ̸=i

[
1 +

t− ti
∆t

1

i− j

]
= Ki

(
t− ti
∆t

)
. (A.3)

1We always assume that both t-grid and ω-grid are equidistant.
2Although the symbol N , in the whole thesis, was reserved for the number of lattice points, here we use it to denote

the number of points on a t grid.
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Since, our G(t) will be approximated as a piecewise Lagrange polynomial, that means that it can also
be cast into form

G(t) =
N−1∑
j=0

G(tj)Kj

(
t− tj
∆t

)
. (A.4)

In this case, the product in Eq. (A.3) does not go over all j, but only over four nearest j. That means
that Kj would be the same for all j if there were no boundary points. To account for the boundary
points, we will rewrite Kj as a term that is independent of j and another, correction term Cj which
will account for these boundary points

G(t) =
N−1∑
j=0

G(tj)K

(
t− tj
∆t

)
+
∑
j

G(tj)Cj

(
t− tj
∆t

)
. (A.5)

The kernel function K can be obtained using (A.3), but technically it is probably easier to obtain it by
interpolating a few key values: K(0) = 1 and K(n) = 0 for n ∈ Z \{0} - this condition ensures the
consistency condition G(t = tj) = G(tj). Of course, K(x) is always obtained by interpolating to the
nearest four points - two to the left and two to the right. Implementing this, we obtain

K(x) =
1

2
(x− 1)(x+ 1)(x− 2)θ(x)θ(1− x)

−1

2
(x− 1)(x+ 1)(x+ 2)θ(−x)θ(x+ 1)

−1

6
(x− 1)(x− 2)(x− 3)θ(2− x)θ(x− 1)

+
1

6
(x+ 1)(x+ 2)(x+ 3)θ(−1− x)θ(x+ 2). (A.6)

The correction terms are also easily obtained and read as

C0(x) =− 1

6
(x− 1)(x− 2)(x− 3)θ(x)θ(2− x)−K(x), (A.7a)

C1(x) =
1

2
(x− 1)(x+ 1)(x− 2)θ(x+ 1)θ(1− x)

− 1

6
(x− 1)(x− 2)(x− 3)θ(x− 1)θ(2− x)−K(x), (A.7b)

C2(x) =− 1

2
(x− 1)(x+ 1)(x+ 2)θ(−x)θ(x+ 2)

+
1

2
(x− 1)(x+ 1)(x− 2)θ(x)θ(1− x)

− 1

6
(x− 1)(x− 2)(x− 3)θ(x− 1)θ(2− x)−K(x), (A.7c)

C3(x) =
1

6
(x+ 1)(x+ 2)(x+ 3)θ(x+ 3)θ(−2− x). (A.7d)

These correction terms (C0, C1, C2, C3) are a consequence of the fact that t0 is a boundary point.
Additional correction terms (CN−1, CN−2, CN−3, CN−4) should arise due to the fact that tN−1 is also a
boundary point, but these are now easily obtained using the symmetry condition CN−1−j(x) = Cj(x).
Having this in mind, we can go back to Eq. (A.5) and perform the analytic integration

G(ω) =

∫ ∞

−∞
dtG(t)eiωt

=
N−1∑
j=0

G(tj)

∫ ∞

−∞
dtK

(
t− tj
∆t

)
eiωt +

N−1∑
j=0

G(tj)

∫ ∞

−∞
dtCj

(
t− tj
∆t

)
eiωt. (A.8)
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In the first integral we will use the substitution x =
t−tj
∆t

, whereas in the second one, we will use
x = t−tmin

∆t
. We obtain

G(ω) =
N−1∑
j=0

∆teiωtjG(tj)K̃(θ) +
∑
j

∆teiωtminG(tj)C̃j(θ), (A.9)

where

θ = ω∆t, (A.10a)

K̃(θ) =

∫ ∞

−∞
dxeiθxK(x), (A.10b)

C̃j(θ) =

∫ ∞

−∞
eiθxCj(x− j). (A.10c)

The second term in Eq. (A.9) has only a few terms. It is thus easy to compute. On the other hand, the
first term can be computationally expensive, so we will try to use FFT to compute it. Setting

ωmin = 0; ∆ω∆t =
2π

N
; ωn = n∆ω; n = 0, 1...

N

2
− 1, (A.11)

and using the same conventions for the FFT as python

f̂k =
N−1∑
j=0

fje
−ijk 2π

N ≡ FFT [fj]k , (A.12a)

fk =
1

N

N−1∑
j=0

f̂je
ijk 2π

N ≡ IFFT
[
f̂j

]
k
, (A.12b)

where i is the imaginary unit and the number of data points is of the form N = 2l, l ∈ N, we see that
the first term in Eq. (A.9) can be easily evaluated using

N−1∑
j=0

G(tj)e
iωnj∆t = N · IFFT [G(tj)]n . (A.13)

The second term in Eq. (A.9) is calculated directly. We note that due to the symmetry condition
CN−1−j(x) = Cj(−x)

C̃N−1−j(θ) =

∫ ∞

−∞
dxeiθxCN−1−j(x−N + 1 + j) =

∫ ∞

−∞
dxeiθxCj(N − 1− j − x)

=

∫ ∞

−∞
dyeiθ(N−1−y)Cj(y − j) = eiθ(N−1)C̃j(θ)

∗

= eiω(tmax−tmin)C̃j(θ)
∗. (A.14)

Hence, combining everything obtained so far we get

G(ωn) =∆teiωntmin

[
NK̃(θ) · IFFT [G(tj)]n

]
+∆teiωntmin

[
C̃0(θ)G(tmin) + C̃1(θ)G(tmin +∆t) + ...

]
+∆teiωntmax

[
C̃0(θ)

∗G(tmax) + C̃1(θ)
∗G(tmax −∆t) + ...

]
. (A.15)
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The second and third lines have only a few terms. In our cubic case, each of them has only four terms.
We note that the negative frequencies ω < 0 are obtained using a similar procedure as the one we
presented after we use the substitution t→ −t in Eq. (A.1).

The only thing that remains is to calculate K̃(θ) and C̃j(θ). This can be obtained straightforwardly
using (A.10), (A.6) and (A.7). We get

K̃(θ) =
6 + θ2

3θ4
[3− 4 cos θ + cos 2θ] , (A.16a)

C̃0(θ) =
−42 + 5θ2 + (6 + θ2)(8 cos θ − cos 2θ)

6θ4
+ i

−12θ + 6θ3 + (6 + θ2) sin 2θ

6θ4
, (A.16b)

C̃1(θ) =
14(3− θ2)− 7(6 + θ2) cos θ

6θ4
+ i

30θ − 5(6 + θ2) sin θ

6θ4
(A.16c)

C̃2(θ) =
−4(3− θ2) + 2(6 + θ2) cos θ

3θ4
+ i

−12θ + 2(6 + θ2) sin θ

3θ4
, (A.16d)

C̃3(θ) =
2(3− θ2)− (6 + θ2) cos θ

6θ4
+ i

6θ − (6 + θ2) sin θ

6θ4
. (A.16e)

We note that this numerical scheme has a removable numerical singularity at θ = 0. To avoid that, we
can use the Taylor expansion of K̃(θ), C̃0(θ), C̃1(θ), C̃2(θ) and C̃3(θ) around θ = 0.

A.2 Transform G(ω) → G(t)

To perform the inverse Fourier transform by definition, we need to evaluate

G(t) =

∫ ∞

−∞

dω

2π
G(ω)e−iωt. (A.17)

It seems logical that we can evaluate this integral using a procedure analogous to the one we presented
in the previous section. However, now there is an additional problem, since G(ω) has a has a high-
frequency tail of the form ∼ 1

ω
, as can be seen using the partial integration, the fact that the Green’s

function is retarded G(t < 0) = 0

G(ω) =

∫ ∞

0

dtG(t)eiωt

= G(t)
eiωt

iω

∣∣∣∣∞
0

−
∫ ∞

0

dt G′(t)
eiωt

iω

= −G(0)
iω

−
[
−G′(t)

eiωt

ω2

∣∣∣∣∞
0

+

∫ ∞

0

dt G′′(t)
eiωt

ω2

]
=
iG(0)

ω
− G′(0)

ω2
− 1

ω2

∫ ∞

0

dt G′′(t)eiωt, (A.18)

and employing the Riemann-Lebesgue lemma to show that the last term goes to zero faster than 1
ω2 ,

meaning

G(ω) ∼ iG(0)

ω
− G′(0)

ω2
as ω → ±∞. (A.19)

As a consequence of this high-frequency tail,G(ω) falls off very slowly to zero for ω → ∞, forcing us
to use an extremely large domain in ω in order to get somewhat decent results. We would like to avoid
this since G(ω) is most often calculated using some numerical algorithm, which means that obtaining
G(ω) in a large ω domain would require a significant amount of computational time.
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One of the ways to deal with this issue is to rewrite the Green’s function as

G(ω) = [G(ω)− T (ω)]︸ ︷︷ ︸
≡Gn.t.(ω)

+T (ω), (A.20)

where T (ω) denotes the high-frequency tail of G(ω). Now, we can perform the inverse Fourier trans-
form on Gn.t.(ω) using a procedure, completely analogous to the one we presented in the previous
section, since this quantity now has no high-frequency tail. Since this was already explained in detail in
Sec. A.1, we focus on performing an inverse Fourier transform on T (ω). This can be done analytically.
Here, we show how this is done using the idea from the TRIQS software library [136].

From Eq. (A.19), we see that T (ω) is of the form

T (ω) =
t1
ω

+
t2
ω2
, (A.21)

where t1 and t2 need to be determined, as G(0) and G′(0) are not initially known. This can be easily
done using fitting, or using the spectral sum rules.

Before we proceed, let us note that we unwillingly introduced the singularity at ω = 0. This
can pose some serious problems for numerical considerations of Gn.t.(ω), so we will have to modify
our tail function before going further. We want to modify T (ω) in such a way that we get the same
asymptotic behavior (up to a square order in 1

ω
) and we also do not want to create any additional

singularities. This can be done by adding a conveniently chosen infinite series of the form 1
ω3+n to the

Eq. (A.21). There are many ways to do this, and we present only one of them

T (ω) = t1

[
1

ω
− 1

ω3
+

1

ω5
+ ...

]
+ t2

[
1

ω2
− 1

ω4
+

1

ω6
+ ...

]
=

t1ω

1 + ω2
+

t2
1 + ω2

=
1
2
(t1 + it2)

ω + i
+

1
2
(t1 − it2)

ω − i
. (A.22)

This way we removed all singularities from the real axis T (0) = t2. One additional problem (that is
not completely obvious) can arise if this tail function has a large peak near ω ≈ 0, and if our ω grid
is not dense enough. We can fix this without introducing a finer grid by modifying our tail function
again. We will introduce the parameter a, that will be conveniently chosen, which will smear off our
peak

T (ω) =
t1
a

[
a

ω
− a3

ω3
+
a5

ω5
+ ...

]
+
t2
a2

[
a2

ω2
− a4

ω4
+
a6

ω6
+ ...

]
=

t1ω

a2 + ω2
+

t2
a2 + ω2

=
1
2
(t1 + i t2

a
)

ω + ia
+

1
2
(t1 − i t2

a
)

ω − ia
. (A.23)

Now, our peak will be smaller T (0) = t2
a2

. It turns out that good results are usually obtained by setting

a = c ·
√
N∆ω, (A.24)

where N is the number of data points used, and c > 1 is arbitrary number such that c <<
√
N . It is

recommended to make c as large as possible, but c = 1 will be just fine in most situations.
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Since we finally found our tail function in Eq.(A.23), we can now transform it to the time domain
analytically. This is easily done using the:∫ ∞

−∞

dω

2π

e−iωt

ω + ia
= −ie−atθ(t), (A.25a)∫ ∞

−∞

dω

2π

e−iωt

ω − ia
= ieatθ(−t). (A.25b)

Both of these relations can be trivially proven using Cauchy’s residue formula. Now, the time-domain
tail function takes the form:

T (t) =
1

2
(t1 + i

t2
a
)(−i)e−atθ(t) + 1

2
(t1 − i

t2
a
)ieatθ(−t). (A.26)

Now, we have everything we need to perform both the Fourier and inverse Fourier transforms in a
numerically efficient and accurate way.
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B
Numerical Integration Scheme for the Calculation of

Highly-Oscillating Functions in the CE Method

The purpose of this appendix is to show a numerical procedure for the calculation of the cumulant func-
tion Ck(t) in the Holstein model. To achieve this, we start from Eq. (3.43) of Part II. This expression
can be separated into two terms

Ck(t) = −g2t
∫ t

0

dx iD(x)eixεkJ0(2t0x)
d + g2

∫ t

0

dx x iD(x)eixεkJ0(2t0x)
d. (B.1)

In practice, the cumulant function is stored on a computer as an array [Ck(t0), Ck(t1) . . . Ck(tG)],
which represent the values of Ck(t) for times [t0 = 0, t1 . . . tG] (this array of times will be referred to
as the t-grid). Therefore, to avoid integrating over the same interval multiple times, it is much better to
divide both of the integrals

∫ t
0

in Eq. (B.1) into a sum of integrals of the form
∫ ti
ti−1

, where ti are times
from the previously defined t-grid

Ck(t) = −g2t
G−1∑
j=0

∫ tj+1

tj

dx iD(x)eixεkJ0(2t0x)
d + g2

G−1∑
j=0

∫ tj+1

tj

dx x iD(x)eixεkJ0(2t0x)
d. (B.2)

The numerical procedure for the integration of each of these intervals is the same1, so we focus on just
one of them, say, t ∈ (ti−1, ti). From now on, to shorten the notation, we denote a ≡ ti and b ≡ ti+1.
Therefore, all the integrals in Eq. (B.2) can be written in the following form

I =

∫ b

a

dx g(x)eir1xJ0(r2x)
d, (B.3)

where g(x) is either a linear or a constant function, while2 r1 = εk ± ω0, and r2 = 2t0. Now, our task
is reduced, and we just need to find a numerical scheme for the calculation of the integral in Eq. (B.3).
Luckily, this has already been studied by Levin for arbitrary r1 and r2 and slowly varying g(x) [119].
In the rest of this appendix, we review this method in the 1D (d = 1), 2D (d = 2), and 3D (d = 3)
cases.

B.1 Overview of the Main Ideas
The main idea is to rewrite the subintegral function in Eq. (B.3) as a scalar product of two columns
|g̃(x)⟩ and |J̃(x)⟩, whose elements are functions

I =

∫ b

a

dx⟨g̃(x)|J̃(x)⟩. (B.4)

1Actually, there is one exception; see Remark 40.
2The phonon propagator is defined below Eq. (3.43) of Part II, and is given by iD(t) = (nph + 1)e−iω0t + nphe

iω0t.
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Column |g̃(x)⟩ should consist exclusively of slowly-varying functions, while all the highly-oscillating
functions should be contained in |J̃(x)⟩, with the property that

d|J̃(x)⟩
dx

= Â(x)|J̃(x)⟩, (B.5)

where Â(x) is some matrix of slowly-varying functions. If we can accomplish that, then the integral
from Eq. (B.4) can be written as

I =

∫ b

a

dx
d

dx
⟨f̃(x)|J̃(x)⟩ = ⟨f̃(b)|J̃(b)⟩ − ⟨f̃(a)|J̃(a)⟩, (B.6)

where we introduced a new quantity |f̃(x)⟩, which satisfies(
d

dx
+ Â†(x)

)
|f̃(x)⟩ = |g̃(x)⟩. (B.7)

Since both Â†(x) and |g̃(x)⟩ are slowly-varying, there also exits a slowly-varying particular solution
of Eq. (B.7). Therefore, this differential equation can then, following Levin [119], be approximately
solved by formally expanding

|f̃(x)⟩ =
M∑
k=1

uk(x)[ck dk . . . ]T , (B.8)

into a basis set of polynomials uk(x) = (x− a+b
2
)k−1 and determining the unknown polynomial coeffi-

cients ck, dk . . . by imposing that Eq. (B.7) is exactly satisfied at M uniformly distributed collocation
points3 xj = a+ (j−1)(b−a)

M−1
, j = 1 . . .M . The initial problem is thus reduced to a simple linear algebra

problem, which is always easy to solve.

B.2 1D Case

In the 1D case (d = 1), columns |g̃(x)⟩ and |J̃(x)⟩ assume the following form

|g̃(x)⟩ = [g(x) 0]T , (B.9a)

|J̃(x)⟩ = eir1x[J0(r2x) J1(r2x)]
T , (B.9b)

where J0(x) and J1(x) are the Bessel functions of the first kind, of zeroth and first order. The matrix
Â(x), such that Eq. (B.5) holds, is given by

Â(x) =

[
ir1 −r2
r2 ir1 − 1

x

]
. (B.10)

The unknown coefficients ck and dk, which determine the column function

|f̃(x)⟩ =
M∑
k=1

uk(x)[ck dk]
T , (B.11)

are obtained from the following set of 2M linear equations

 C Cd

Dc D




c1
...
cM
d1
...
dM


=



g(x1)
...

g(xM)
0
...
0


. (B.12)

3This is known as the M -point collocation approximation.
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Here, C, Cd,Dc,D are M ×M matrices that read as

Cij = u′j(xi)− ir1uj(xi) (B.13a)

Cdij = r2uj(xi) (B.13b)

Dij = u′j(xi)−
(
ir1 +

1

xi

)
uj(xi) (B.13c)

Dc
ij = −r2uj(xi). (B.13d)

The solution of Eq. (B.3) for d = 1 is now obtained using Eq. (B.6), where |J̃(x)⟩ is given by
Eq. (B.9b), and |f̃(x)⟩ is given by Eq. (B.11), with the coefficients c1, . . . cM , d1, . . . dM that are
obtained by solving Eq. (B.12).

B.3 2D Case
In the 2D case, the relevant quantities are given by

|g̃(x)⟩ = [g(x) 0 0]T , (B.14a)

|J̃(x)⟩ = eir1x[J0(r2x)
2 J0(r2x)J1(r2x) J1(r2x)

2]T , (B.14b)

Â(x) =

ir1 −2r2 0
r2 ir1 − 1

x
−r2

0 2r2 ir1 − 2
x

 . (B.14c)

The column

|f̃(x)⟩ =
M∑
k=1

uk(x)[ck dk ek]
T (B.15)

is determined by ck, dk and ek, which are obtained as a solution of the following system of 3M linear
equations


C Cd Ce

Dc D De

Ec Ed E





c1
...
cM
d1
...
e1
...


=



g(x1)
...

g(xM)
0
...
0
...


. (B.16)

Here, C, Cd . . . E are M ×M matrices. Elements of Cij and Cdij are the same as in Eq. (B.13), while
Ceij = Ecij = 0. All the other elements are given by:

Dc
ij = −2r2uj(xi) (B.17a)

De
ij = 2r2uj(xi) (B.17b)

Dij = u′j(xi)−
(
ir1 +

1

xi

)
uj(xi) (B.17c)

Eij = u′j(xi)−
(
ir1 +

2

xi

)
uj(xi) (B.17d)

Edij = −r2uj(xi) (B.17e)

Therefore, the solution of Eq. (B.3) for d = 2 is found by first solving Eq. (B.16) for c1, . . . cM ,
d1, . . . dM , e1, . . . eM , using this to calculate |f̃(x)⟩ in Eq. (B.15), and along with Eq. (B.14b), plugging
this into Eq. (B.6).
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B.4 3D Case
The procedure that was presented so far is actually quite easily generalized to the 3D case as well.
Here, the quantities of interest are easily derived and read as

|g̃(x)⟩ = [g(x) 0 0 0]T , (B.18a)

|J̃(x)⟩ = eir1x[J0(r2x)
3 J0(r2x)

2J1(r2x) J0(r2x)J1(r2x)
2 J1(r2x)

3]T , (B.18b)

Â(x) =


ir1 −3r2 0 0
r2 ir1 − 1

x
−2r2 0

0 2r2 ir1 − 2
x

−r2
0 0 3r2 ir1 − 3

x

 , (B.18c)

|f̃(x)⟩ =
M∑
k=1

uk(x)[ck dk ek fk]
T , (B.18d)

where the coefficients ck, dk, ek and fk satisfy



C Cd Ce Cf

Dc D De Df

Ec Ed E Ef

F c Fd F e F





c1
...
cM
d1
...
e1
...
f1
...


=



g(x1)
...

g(xM)
0
...
0
...
0
...


. (B.19)

Here Cij , Cdij , Ceij , Dij , De
ij , Ecij and Eij are the same as in Eqs. (B.13) and (B.17), while Cfij = F c

ij =

Df
ij = Fd

ij = 0. All other elements are given by:

Edij = −2r2uj(xi), (B.20a)

Efij = 3r2uj(xi), (B.20b)

Dc
ij = −3r2uj(xi), (B.20c)

F e
ij = −r2uj(xi), (B.20d)

Fij = u′j(xi)−
(
ir1 +

3

xi

)
uj(xi). (B.20e)

Therefore, in a complete analogy to 1D and 2D, the solution of Eq. (B.3) for d = 3 is calculated using
Eq. (B.6), where |J̃(x)⟩ and |f̃(x)⟩ are given by Eqs. (B.18b) and (B.18d), respectively. Thus, our
numerical scheme has been completely specified.

Remark 40. We note that Eqs. (B.13), (B.17) and (B.20) explicitly demonstrate that our numerical
scheme is singular at x = 0. This does not pose any problems, as the subintegral function in our
initial expression (B.3) is not highly-oscillatory around x = 0. Therefore, the trapezoid scheme can
be applied there.
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Appendix C - Current Operator in Quantum Mechanics

C
Current Operator in Quantum Mechanics

C.1 Introduction
This text is devoted to the derivation of the current density operator in two different, but relevant cases:

• In the continuum case - this is a standard derivation that can be found in many texts; for example
see Ref. [128]. The standard idea is to modify the kinetic term of the Hamiltonian, using the
minimal substitution p → p− e0A. Then, the current density is derived straightforwardly from
its most general definition j(r) = − δH

δA(r)
, which is motivated in Sec. C.2.

• In the case of a lattice, with a tight-binding Hamiltonian that includes only the nearest-neighbor
hopping - while the total current can easily be derived [1], the derivation of the Fourier compo-
nents of the current is more involved. Analogous to the minimal substitution in the continuum

case, here we use the Pierels substitution tij → tije
−i

∫Rj
Ri

drA(r,t) to include the vector potential
A(r) in the Hamiltonian. Before the application of the definition j(r) = − δH

δA(r)
, it is standard

to restrict the derivation to the case when the field A(r) slowly varies on the atomic scale, such
that

∫ Rj

Ri
drA(r, t) can be approximated as a linear combination A(Ri, t) and A(Rj, t). For

example, in the 1D case we can approximate:

1. ∫ Rj

Ri

dxA(x, t) ≈ Rj −Ri

2
(A(Ri, t) + A(Rj, t)) . (C.1)

In this approach, which has for example been used Ref. [126], the left-hand side of Eq. C.1
has been approximated as a single trapezoid.

2. ∫ Rj

Ri

dxA(x, t) ≈ (Rj −Ri)A(Rj, t). (C.2)

Here,
∫ Rj

Ri
dxA(x, t) has been approximated as a single rectangle, where the height of that

rectangle is taken to be A(Rj, t). Similarly, we can also take the height of the rectangle to
be A(Ri, t) ∫ Rj

Ri

dxA(x, t) ≈ (Rj −Ri)A(Ri, t). (C.3)

As we will see, neither Eq. (C.2), nor Eq. (C.3) leads to the Hermitian Hamiltonian. This
problem can be solved by combining approximations in Eqs. (C.2) and (C.3) in the fol-
lowing way: approximation (C.2) is used for the hopping from site j to site i, whereas
approximation (C.3) is used for its Hermitian conjugate term. This approach has been used
by Refs. [125, 137].
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These two approaches lead to two different expressions for the current operator. It turns out that
Eq. (C.1) will lead to a real current vertex, while the combination of Eqs. (C.2) and (C.3) will lead to
a complex current vertex. Both of these have certain advantages and disadvantages, as we will discuss
later in detail.

C.2 Some General Remarks on the Definition of the Current Den-
sity Operator

Here, we discuss some model-independent ways in which the current operator is defined. Typically,
the current operator j is calculated either by finding such j that the continuity equation is satisfied

∂µj
µ(r, t) = 0 ⇐⇒ ∂ρ

∂t
= −div j(r, t), (C.4)

or directly by using

j(r) = − δH

δA(r, t)
(C.5)

where H is the Hamiltonian of the theory, in which the vector potential has been introduced. Since the
continuity Equation (C.4) has been thoroughly studied in any textbook on electromagnetism, we will
here give the motivation only for Eq. (C.5).

For this, we first recall from classical mechanics that the Lagrangian of the system of particles in
an electromagnetic field is given by

L =
∑
i

[
1

2
miv

2
i + qivi ·A(ri)− qiφ(ri)

]
− V (r1, r2 . . . ). (C.6)

Then, we switch to the Hamiltonian description of the system

pi ≡
∂L

∂vi
= mivi + qiA(ri) (C.7a)

H =
∑
i

pi · vi − L (C.7b)

=
∑
i

[
vi · (pi − qiA(ri))−

1

2
miv

2
i − qiφ(ri)

]
− V (r1, r2 . . . ) (C.7c)

=
∑
i

[
1

2mi

(pi − qiA(ri))
2 − qiφ(ri)

]
− V (r1, r2 . . . ). (C.7d)

We note that the last line could be obtained directly by using the minimal coupling description pi →
pi − qiA(ri) in the Hamiltonian formalism.

Now the current will pop out by inspecting the variation of the Hamiltonian δH , as a response to
the variation of the vector potential δA

δH = H(A+ δA)−H(A) = −
∑
i

qiδA(ri)

mi

(pi − qiA(ri)) (C.8)

= −
∑
i

qiviδA(ri) = −
∫
dr
∑
i

qiviδ(r− ri)︸ ︷︷ ︸
≡j(r)

δA(r) (C.9)

= −
∫
dr j(r)δA(r) (C.10)

The last line directly implies Eq. (C.5), which completes our motivation.
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C.3 Current Density Operator in the Case of a Continuum
We restrict ourselves to the case of the spinless systems, which are relevant for our study, while the
generalization to the case with spin is straightforward. In our case, the corresponding Hamiltonian
reads as

H =

∫
dr ψ†(r)

[p− e0A(r)]2

2m0

ψ(r) + . . . (C.11)

=
1

2m0

∫
dr ψ†(r)

[
ie0∇A+ ie0A∇+ e20A

2
]
ψ(r) + . . . , (C.12)

where the dots . . . denote the terms with no A dependence. As we want to use Eq. (C.5), we need to
transform the term with ∇A, by using the integration by parts

1

2m0

∫
dr ψ†(r)ie0∇A(r)ψ(r) = − ie0

2m0

∫
dr A(r)

(
∇ψ†(r)

)
ψ(r), (C.13)

where the surface term has been neglected. Hence

H =
e0
2m0

∫
dr

[
−
(
∇ψ†(r)

)
iA(r)ψ(r) + ψ†(r)iA(r)∇ψ(r) + e0A(r)2ψ†(r)ψ(r)

]
+ . . . (C.14)

Using Eq. (C.5), we directly obtain the current density operator:

j(r) = jp(r) + jd(r)

jp(r) =
ie0
2m0

[(
∇ψ†(r)

)
ψ(r)− ψ†(r)∇ψ(r)

]
jd(r) = − e20

m0

A(r)ψ†(r)ψ(r)

(C.15)

To transform these relations to the Fourier space we use:

j(q) =

∫
drj(r)e−iqr, (C.16)

ψ†(r) =
1√
V

∑
k

e−ikrc†k , (C.17)

ψ(r) =
1√
V

∑
k

eikrck , (C.18)

c†k =
1√
V

∫
dreikrψ†(r), (C.19)

ck =
1√
V

∫
dre−ikrψ(r), (C.20)

obtaining

jp(q) =
ie0

2m0V

∫
dre−iqr

[∑
k1,k2

−ik1 − ik2

]
e−ik1r+ik2rc†k1

ck2 (C.21)

=
e0
2m0

∑
k

(2k+ q) c†kck+q , (C.22)
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and

jd(q) = − e20
m0V

∫
dre−iqrA(r)

∑
k1,k2

e−ik1r+ik2rc†k1
ck2 (C.23)

= − e20
m0V

∑
k1,k2

c†k1
ck2A(q+ k1 − k2) (C.24)

= − e20
m0V

∑
k1,k2

A(k1 − k2)c
†
k1
ck2+q . (C.25)

Hence:

j(q) = jp(q) + jd(q)

jp(q) =
e0
2m0

∑
k

(2k+ q) c†kck+q ,

jd(q) = − e20
m0V

∑
k1,k2

A(k1 − k2)c
†
k1
ck2+q .

(C.26)

C.4 Current Density Operator in the Case of a Lattice

C.4.1 Full Current Operator
If we are interested only in the full current operator (corresponding to q = 0 Fourier components),
and not its other Fourier components, we can easily calculate it as a time derivative of the polarization
operator

jtot ≡
∂P

∂t
= −i[P, H]. (C.27)

This definition can be motivated by the continuity equation

∂P

∂t
=

∫
dr
∂ρ

∂t
r = −

∫
dr (div j) r =

∫
dr j(div r) =

∫
dr j ≡ jtot. (C.28)

If we are not interested in the r dependence, then we can simply define the current density operator to
be

j =
jtot
V

=
1

V

∂P

∂t
= − i

V
[P, H]. (C.29)

Remark 41. We always set the volume of a unit cell to unity. Hence, we can always use the number of
lattice sites N instead of the volume V (and vice versa) in all our formulas.

Remark 42. In the case of the Holstein model, only the kinetic part of the Hamiltonian contributes in
Eq. (C.29), as the interaction term commutes with the polarization operator.

1D Case with Tight-binding Hamiltonian and Nearest-neighbor Interaction

Let us now calculate j from Eq. (C.29) in the case of 1D tight-binding Hamiltonian with nearest-
neighbor hopping. In this case:

Hkin = −
∑
⟨j1,j2⟩

tj1j2c
†
j1
cj2 = −t0

∑
i

(
c†rcr+1 + h.c

)
, (C.30)

P = e0
∑
j

jc†jcj. (C.31)
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It is now straightforward to substitute Eqs. (C.30) and (C.31) to Eq. (C.29) and to obtain:

j =
ie0t0
N

∑
j,r

j
[
c†jcj, c

†
rcr+1

]
+ h.c. (C.32)

=
ie0t0
N

∑
r

(
rc†rcr+1 − (r + 1)c†rcr+1

)
+ h.c, (C.33)

where we used the following relation between the commutator [, ] and the anticommutator {, }:
[AB,C] = A {B,C} − {A,C}B and [A,BC] = {A,B}C −B {A,C}. Hence,

j =
ie0t0
N

∑
r

(
c†r+1cr − c†rcr+1

)
=
e0
N

∑
k

vkc
†
kck , (C.34)

where vk = ∇kεk = 2t0 sin k.

Tight-binding Hamiltonian with Nearest-neighbor Interaction in an Arbitrary Number of Di-
mensions

The 1D results can easily be generalized to an arbitrary number of dimensions, in the case of hypercubic
lattice. We just need to introduce the vector δ that goes over the nearest neighbor vectors. Using this,
the Hamiltonian and polarization operator read as1

Hkin = −t0
∑
r,δ

c†rcr+δ (C.35)

P = e0
∑
r

rc†rcr , (C.36)

while the calculation of the current is analogous to the 1D case, giving

j =
ie0t0
V

∑
r,δ

δ · c†r+δcr =
e0
V

∑
k

vkc
†
kck , (C.37)

where vk = ∇kεk.

Remark 43. In the rest of this chapter and generally, in this thesis, we set e0 = 1, unless stated
otherwise.

C.4.2 Fourier Components of the Current Density Operator
If we are interested in the current density operator in the Fourier space, or equivalently as a function of
lattice coordinate, then the result in Eq. (C.34) is not satisfactory. In order to use the current definition
from Eq. (C.5), we first need to introduce the vector potential in the tight-binding Hamiltonian. This
can be done by modifying the hopping parameter tij via the Pierels substitution2

tj1j2 → tj1j2e
−i

∫Rj2
Rj1

drA(r,t)
. (C.38)

Let us now restric ourselves to the 1D case, and assume that the vector potential does not vary
too much on the atomic scale. We will derive the current operators starting from Eq. (C.1) and
Eqs. (C.2) and (C.3), as we explained in Sec. C.1.

1Here, we assume that for every nearest neighbor at δ, there is another nearest neighbour at −δ.
2There should also be e0 in the exponent, but we already set e0 = 1.
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We will see that a more symmetric approximation from Eq. (C.1) leads to the real current vertex,
but the drawback is that div j cannot be properly defined in the coordinate space. On the other hand, the
divergence of current is easily defined if we start from Eqs. (C.2) and (C.3), but the current vertex turns
out to be complex. Thus, we see that both of these approaches has certain advantages and limitations.
These will be discussed in detail below.

C.4.2.1 Current Density Operator using Approximation from Eq. (C.1)

1D Case

In this case, the 1D nearest-neightbour Hamiltonian becomes

H = −t0
∑
j

[
e−

i
2
(A(j)+A(j+1))c†jcj+1 + e

i
2
(A(j)+A(j+1))c†j+1cj

]
+ . . . , (C.39)

where . . . denote the terms that do not depend on A(j). The current density operator is now obtained
using3 Eq. (C.5)

jr ≡ − δH

δA(r)
(C.40)

= t0
∑
j

[
− i

2
e−

i
2
(A(j)+A(j+1)) (δj,r + δj+1,r) c

†
jcj+1 + h.c.

]
(C.41)

= −it0
2

[
c†rcr+1e

− i
2
(A(r)+A(r+1)) + c†r−1cre

− i
2
(A(r)+A(r−1))

]
+ h.c. (C.42)

Let us now approximate the exponential using the Taylor series, up to a linear order, and collect the
terms with and without A dependence. These correspond to diamagnetic and paramagnetic terms of
current density, respectivally

jr = jpr + jdr (C.43)

jpr =
it0
2

[
c†rcr−1 + c†r+1cr − c†rcr+1 − c†r−1cr

]
(C.44)

jdr = −t0
4

[
(A(r) + A(r + 1)) c†rcr+1 + (A(r) + A(r − 1)) c†r−1cr

]
+ h.c. (C.45)

Due to our assumption that the vector potential slowly varies on the atomic scale, we can further
approximate A(r + 1) ≈ A(r − 1) ≈ A(r) in the diamagnetic term. Hence

jdr = −t0
2
A(r)

[
c†rcr+1 + c†r−1cr + c†r+1cr + c†rcr−1

]
. (C.46)

Since the goal of our work is to calculate the responce functions in the linear responce theory, and
these are connected to the correlation functions in the absence of the external potential, from now on
we will concentrate on the paramagnetic term jr ≡ jpr . To obtain its the Fourier components, we use

jq =
∑
r

e−iqrjr, (C.47a)

c†r =
1√
N

∑
k1

e−ik1rc†k1 , (C.47b)

cr =
1√
N

∑
k2

eik2rck2 . (C.47c)

3In the case of a lattice, the right-hand side of Eq. (C.5) should be divided by the volume of the unit lattice, but this
was set to unity.
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We get

jq =
it0
2N

∑
r,k1,k2

e−iqr
[
e−ik2 + e−ik1 − eik2 − eik1

]
ei(k2−k1)rc†k1ck2 (C.48)

= t0
∑
k

[sin(k) + sin(k + q)] c†kck+q (C.49)

This can also be written as:

jq = 2t0
∑
k

sin(k +
q

2
) cos

(q
2

)
c†kck+q (C.50)

The Case of a Tight-Binding Hamiltonian with Nearest-neighbor Interaction in an Arbitrary
Number of Dimensions

All of these results are easily generalized to the higher-dimensional case4. We just give the result for
the paramagnetic current, which is all we actually need

jp(r) =
it0
2

∑
δ

(
c†rcr−δ + c†r+δcr

)
δ (C.51)

where δ goes over the nearest neighbour vectors. The Fourier transform of the paramagnetic current is
also easily obtained and reads as

j(q) =
it0
2

∑
k,δ

δ
[
e−iδk + e−iδ(k+q)

]
c†kck+q (C.52)

Due to inversion symmetry, for every nearest neighbor at δ, there is another nearest neighbor situated
at −δ. Hence, we can introduce the notation

∑
δ̃ which denotes a sum that goes over half of the nearest

neighbors, such that the other half is obtained as −δ̃. In this case, the last expression can be written as

j(q) = 2t0
∑
k,δ̃

δ̃ sin

(
k δ̃ +

q δ̃

2

)
cos

(
q δ̃

2

)
c†kck+q . (C.53)

C.4.2.2 Current Density Operator using Approximation from Eqs. (C.2) and (C.3)

1D Case

If we straightforwadly applied approximation (C.2), then the corresponding Hamiltonian would be
given by

H = −t0
∑
j

[
e−iA(j+1)c†jcj+1 + eiA(j)c†j+1cj

]
+ . . . (C.54)

This Hamiltonian is not Hermitian. As we already assumed that the vector potential is slowly varying
on the atomic scale, we could fix this problem by hand, by approximating A(j) ≈ A(j + 1). On the
other hand, this can also be done by using approximation (C.2) on the hopping terms c†jcj+1, while
using approximation (C.3) on the hopping terms c†j+1cj . In this case, the Hamiltonian becomes

H = −t0
∑
j

[
e−iA(j+1)c†jcj+1 + eiA(j+1)c†j+1cj

]
+ . . . , (C.55)

4We assume that a lattice has inversion symmetry.
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where dots . . . denote the terms that do not depend on A(j). The current density operator is now
obtained using Eq. (C.5)

jr ≡ − δH

δA(r)
(C.56)

= −it0e−iA(r)c†r−1cr + it0e
iA(r)c†rcr−1 (C.57)

= it0

[
c†rcr−1 − c†r−1cr

]
− t0

[
c†rcr−1 + c†r−1cr

]
A(r) + . . . , (C.58)

where dots . . . denote the higher order terms with respect to A. From here, we can read off the
paramagnetic and diamagnetic terms:

jr ≡ jpr + jdr

jpr = it0

[
c†rcr−1 − c†r−1cr

]
jdr = −t0

[
c†rcr−1 + c†r−1cr

]
A(r)

(C.59)

Again, we concentrate on the paramagnetic term jr ≡ jpr , which is the only one that gives a contribution
in the calculation of response functions in the linear response theory. Its Fourier components can
straightforwardly be calculated using Eq. (C.47)

jq =
it0
N

∑
r,k1,k2

e−iqr
[
e−ik2r − eik1r

]
ei(k2−k1)rc†k1ck2 (C.60)

Hence,

jq = it0
∑
k

[
e−i(k+q) − eik

]
c†kck+q. (C.61)

The Case of a Tight-binding Hamiltonian with Nearest-neighbor Interaction in an Arbitrary
Number of Dimensions

The derivations that we presented can easily be repeated for the higher-dimensional case. As in the 1D
case, in order to keep the Hamiltonian Hermitian after the Pierels substitution, we need to use different
approximations for the hopping terms going from site j to i, and for hopping terms going from i to
j. This is why Eq. (C.35) is not convenient for our purpose. Instead, we will restict ourselves to the
case of a lattice with inversion symmetry. In this case, it is better to write the Hamiltonian (before
introducing the vector potential ) as

Hkin = −t0
∑
r,δ̃

(
c†rcr+δ̃ + c†

r+δ̃
cr

)
, (C.62)

where the sum over δ̃ goes over only a half of the nearest-neighbours, such that all nearest neighbours
are obtained using δ̃ and −δ̃. For example, in the cubic lattice δ̃ would go over [1, 0, 0], [0, 1, 0] and
[0, 0, 1]. Now, analogous to the 1D case, the vector potential is introduced as follows

Hkin = −t0
∑
r,δ̃

(
c†rcr+δ̃e

−iδ̃A(r+δ̃) + c†
r+δ̃

cre
iδ̃A(r+δ̃)

)
. (C.63)

The paramagnetic current is also easily calculated, and reads as

jp(r) = it0
∑
δ̃

(
c†rcr−δ̃ − c†

r−δ̃
cr

)
δ̃, (C.64)
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while its Fourier transform is given by

j(q) = it0
∑
k,δ̃

δ̃
(
e−iδ̃(k+q) − eiδ̃k

)
c†kck+q (C.65)

C.5 Continuity Equation and its Consequences

The Case of Continuum
Eqs. (C.26), (C.50) and (C.61) were all derived from Eq. (C.5). It is not immediately clear whether
each of these expressions satisfies the contiuity eqution. In the case of Eq. (C.26), this can be easily
explicitly checked. To do so, we first transform the continuity equation

div j(r, t) = −∂ρ
∂t

= i[ρ(r), H] (C.66)

into the Fourier space
q j(q) = [ρ(q), H] = [ρ(q), Hkin]. (C.67)

In the last equality, we restricted ourselves to the case when only the kinetic part of the Hamiltonian
does not commute with the particle density. This is true for the models we are considering.

Eq. (C.67) can now explicitly be checked, both in the most general case when A is finite, and in
the special case when we take only the paramagnetic part of the current operator (in which case we
must also set A = 0 in Hkin). We will now prove that continuity equation holds in the most general
case. In order to calculate commutator in Eq. (C.67), we first use Eqs. (C.17) and (C.18) to express
Hkin from Eq. (C.12) using creation/annihilation operators in the Fourier space5

Hkin =
1

2m0V

∑
k1,k2

∫
dre−ik1r

(
k2
2 − e0(−i∇)A(r)− e0A(r)(−i∇) + e20A(r)2

)
eik2rc†k1

ck2 .

(C.68)
Using the integration by parts in the second term in the brackets, we get

Hkin =
1

2m0V

∑
k1,k2

∫
dre−ik1r

(
k2
2 + e0(−i ⃗∇)A(r)− e0A(r)(−i∇) + e20A(r)2

)
eik2rc†k1

ck2 .

(C.69)
Hence,

Hkin =
1

2m0V

∑
k1,k2

∫
dre−ik1r

[
k2
2 − e0(k1 + k2)A(r) + e20A(r)2

]
eik2rc†k1

ck2 (C.70)

=
1

2m0V

∑
k1,k2

[
V k2

2 δk1,k2 − e0(k1 + k2)A(k1 − k2) + e20A
2(k1 − k2)

]
c†k1
ck2 , (C.71)

where A2(k1 − k2) is the Fourier transform of A2(r), and not the squre of the Fourier transform. The
right-hand side of Eq. (C.67) now reads as

[ρ(q), Hkin] =
e0

2m0V

∑
k1,k2,k3

[
c†k3
ck3+q, c

†
k1
ck2

]
×
(
V k2

2 δk1,k2 − e0(k1 + k2)A(k1 − k2) + e20A
2(k1 − k2)

)
. (C.72)

5Exclusively for the purpose of this derivation, we reintroduce e0, as was done in Sec. C.3.
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The commutator is calculated as follows[
c†k3
ck3+q, c

†
k1
ck2

]
= c†k3

ck2δk3+q,k1 − c†k1
ck3+qδk3,k2 . (C.73)

Hence,

[ρ(q), Hkin] =
e0

2m0V

∑
k1,k2

(
c†k1−qck2 − c†k1

ck2+q

)
×
(
V k2

2 δk1,k2 − e0(k1 + k2)A(k1 − k2) + e20A
2(k1 − k2)

)
. (C.74)

This can be further simplified if we make the substitution k1 → k1 + q, k2 → k2 + q in the terms
proportional to c†k1−qck2

[ρ(q), Hkin] =
e0
2m0

∑
k

[
(k+ q)2 − k2

]
c†kck+q

− e20
2m0V

∑
k1,k2

2qA(k1 − k2)c
†
k1
ck2+q

=
e0
2m0

∑
k

(
2kq+ q2

)
c†kck+q︸ ︷︷ ︸

q jp(q)

− e20
m0V

∑
k1,k2

qA(k1 − k2)c
†
k1
ck2+q︸ ︷︷ ︸

q jd(q)

= q j(q). (C.75)

This proves that the definition of current operator from Eq. (C.26) satisfies the continuity Equa-
tion (C.67).

The Case of a Lattice
In the case of a lattice, things are a little more subtle. In this case, the system is discrete, so the spacial
derivative ∂

∂x
as an operation does not exist in the usual sence. This is also true for the divergence

operator. Hence, one cannot check whether the continuity equation, in the form of Eq. (C.66), is
satisfied or not. Instead, we can assume that it is satisfied, and use this assumption to derive the form
of the divergence operator on the lattice. To do so, we need to start from Eq. (C.66), with a slightly
different notation since the system is now discrete

div jr = −∂nr(t)

∂t
, (C.76)

use the Heisenberg equation

div jr = i[nr, Hkin], (C.77)

and calculate the commutator on the right-hand side.

1D Case

In the case, Hkin is given by Eq. (C.30), so the commutator is calculated as follows

div jr ≡ i[nr, Hkin] = −it0
∑
r1

[
c†rcr, c

†
r1
cr1+1

]
+ h.c. (C.78)

= it0

(
c†r+1cr − c†rcr+1 − c†rcr−1 + c†r−1cr

)
(C.79)
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In the case when the current6 is defined as in Sec. C.4.2.1, we see that the continuity equation can be
written as

div jr = jr+1 − jr. (C.80)

This is a somewhat natural definition of the divergence on a discrete lattice, for a 1D system. However,
it is important to note that the particular form of the divergence in Eq. (C.80) depends on the definition
of the current density operator. In the case of the current operator from Sec. C.4.2.2, it is actually
impossible to rewrite the right-hand side of Eq. (C.79) as a linear combination of current operators at
different lattice sites. Luckilly, this is not a problem for us, as we are actually interested in the Fourier
version of the continuity equation. This is because in our study, we are interested in the restrictions
that the continuity equation places upon the vertex functions in the k space. In the following, we show
that div jr in the Fourier space can always be written using jq.

F [div jr](q) = i[nq, Hkin] (C.81)

= i
∑
k1,k2

εk2 [c
†
k1
ck1+q, c

†
k2
ck2 ] (C.82)

= i
∑
k

(εk+q − εk) c
†
kck+q (C.83)

= −2it0
∑
k

(cos(k + q)− cos(k)) c†kck+q (C.84)

In the case when the current is given by Eq. (C.59), this becomes

F [div jr](q) =− it0
∑
k

[
e−i(k+q) − eik

]
c†kck+q (C.85)

− it0
∑
k

[
ei(k+q) − e−ik

]
c†kck+q (C.86)

This can be further simplified as

F [div jr](q) =
(
eiq − 1

)
jq. (C.87)

On the other hand, if the current density is given by Eq. (C.50), then it is better to transform Eq. (C.84)
as

F [div jr](q) = 4it0
∑
k

sin
(
k +

q

2

)
sin
(q
2

)
c†kck+q (C.88)

= 2i tan
(q
2

)
jq (C.89)

Hence, in both of these cases, we can write

F [div jr](q) = i∆(q)jq. (C.90)

We note that ∆(q) satisfies the property that

∆(q) ≈ q, for q → 0. (C.91)

Hence, the result in the long wavelength limit coincides with the continuum result, which is expected.

6We emphasize once again that we consider only the paramagnetic part of the current density operator
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Higer Dimensional Case

Analogous to Eq. (C.83), we can write

F [div jr](q) = i
∑
k

(εk+q − εk)c
†
kck+q , (C.92)

where εk is now given by
εk = −t0

∑
δ

eiδk. (C.93)

Hence,
F [div jr](q) = −it0

∑
k,δ

[
eiδ(k+q) − eiδk

]
c†kck+q . (C.94)

If we now introduce the symbol δ̃, whose meaning was explained in Sec. C.4.2.1 and C.4.2.2, then the
previous expression can be cast into the following form7

F [div jr](q) = −it0
∑
k,δ̃

[
eiδ̃(k+q) + e−iδ̃(k+q) − eiδ̃k − e−iδ̃k

]
c†kck+q (C.95)

= 4it0
∑
k,δ̃

sin

(
kδ̃ +

qδ̃

2

)
sin

(
qδ̃

2

)
c†kck+q . (C.96)

If we restrict ourselves to the case of hypercubic lattice, in arbitrary number of dimensions, then this
can also be written as

F [div jr](q) = i∆(q) · j(q), (C.97)

where ∆(q) is given by

∆(q) = 2
∑
δ̃

tan

(
qδ̃

2

)
δ̃, (C.98)

in the case when we use the current operator from Sec. C.4.2.1, while

∆(q) = −i
∑
δ̃

[
eiδ̃q − 1

]
δ̃, (C.99)

corresponds to the current operator from Sec. C.4.2.2. As we already noted, the continuum case is
obtained by taking

∆(q) = q (C.100)

We conclude this section by stating a version of the continuity equation, both in real and imaginary
time (τ = it), which is valid both in the continuum and on a lattice

∂nq

∂t
+ i∆(q) · jq(t) = 0

∂nq

∂τ
+∆(q) · jq(τ) = 0

(C.101)

7Here, we implicitly assume that for every nearest neighbour situated at δ, there is another nearest neighbour at −δ.
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C.6 General Form of the Current Operator
In previous sections we saw that there are different ways in which the exponent in the Pierels substi-
tution (see Eq. (C.38)) can be approximated in the case when the field varies slowly on the atomic
scale. We showed two different approaches, given in Eqs. (C.39) and (C.55), lead to two different
current operators. Furthermore, the continuity equation is a bit different for each of these cases, but
can always be written in the form of Eq. (C.101), with a suitable choice of ∆(q). Here, we give a
more general derivation of the current operator and continuity equation, such that the current operators
from previous sections turn out to be special cases.

Current Operator in Coordinate Representation
After the Pierels substituion, the Hamiltonian reads as

H = −t0
∑
r

∑
δ

c†rcr+δ · exp
(
−i
∫ r+δ

r

drA(r)

)
, (C.102)

where δ goes over the nearest-neighbours. If the field A(r) varies slowly on the atomic scale, the
integral inside the exponential can be approximated as a scalar product of the displacement vector
between the nearest neighbours and the linear combination of A(r) at the endpoints. Before we do
this, we introduce the parameter δ̃, as explained in Sec. C.4.2 in order to make the Hamiltonian more
explicitly Hermitian

H = −t0
∑
r

∑
δ̃

[
c†rcr+δ̃e

−imA(r)+nA(r+δ̃)
m+n

δ̃ + c†
r+δ̃

cre
i
mA(r)+nA(r+δ̃)

m+n
δ̃
]

(C.103)

The current operator then reads as

j(r) = − δH

δA(r)
=− it0

m+ n

∑
δ̃

(
mc†rcr+δ̃ + nc†

r−δ̃
cr

)
δ̃

+
it0

m+ n

∑
δ̃

(
mc†

r+δ̃
cr + nc†rcr−δ̃

)
δ̃.

(C.104)

We now see that the current operator from Eq. (C.51) is obtained by setting m = n in the previous
equation, while the current from Eq. (C.64) is obtained by setting m = 0.

Current Operator in Momentum Representation
The momentum representation is obtained by using

j(q) =
∑
r

e−iqrj(q), (C.105)

c†r =
1√
N

∑
k

e−ikrc†k , (C.106)

cr =
1√
N

∑
k

eikrck . (C.107)

We get:

j(q) =
it0

m+ n

∑
k

∑
δ̃

[
−mei(k+q)δ̃ − neikδ̃ +me−ikδ̃ + ne−i(k+q)δ̃

]
δ̃ c†kck+q . (C.108)
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Continuity Equation in the Case of Hypercubic Lattice
Theorem 8. In the case of hypercubic lattice with nearest-neighbour hopping, the continuity equation
can be written as

∂nq

∂t
+ i∆(q) · jq(t) = 0, (C.109)

where ∆(q) is given by

∆(q) =
∑
δ̃

2δ̃

cot qδ̃
2
+ im−n

m+n

(C.110)

while δ̃ goes over the orthonormal vectors [1, 0, 0 . . . ], [0, 1, 0 . . . ], [1, 0, 0 . . . ] . . .

Proof. As explained in Sec. C.5, the continuity equation reads as

div jr = −∂nr(t)

∂t
= i[nr, Hkin]. (C.111)

which can be rewritten in the Fourier space as follows

F [div jr](q) = i
∑
k

(εk+q − εk) c
†
kck+q . (C.112)

Hence, our task reduces to show that the scalar product i∆(q) · jq, using ∆(q) from Eq. (C.110) and
jq from Eq. (C.108), is equal to the right-hand side of Eq. (C.112). To do so, it turns out that it is much
more convenient to rewrite j(q) as

j(q) = t0
∑
k,δ̃

δ̃
(
sin(kδ̃) + sin((k+ q)δ̃)

)
c†kck+q

+
it0(m− n)

m+ n

∑
k,δ̃

δ̃
(
cos(kδ̃)− cos((k+ q)δ̃)

)
c†kck+q . (C.113)

Now, it is straightforward to derive the following

i∆(q) · jq = it0
∑
δ̃1,δ̃2

2δ̃1 · δ̃2
cot qδ̃1

2
+ im−n

m+n

∑
k

(
sin(kδ̃2) + sin((k+ q)δ̃2)

)
c†kck+q

−t0(m− n)

m+ n

∑
δ̃1,δ̃2

2δ̃1 · δ̃2
cot qδ̃1

2
+ im−n

m+n

∑
k

(
cos(kδ̃2)− cos((k+ q)δ̃2)

)
c†kck+q . (C.114)

We can eliminate the sum over δ̃2 because {δ̃} forms an orthonormal set of vectors. Furthermore,
using sinx+ sin y = 2 sin

(
x+y
2

)
cos
(
x−y
2

)
and cosx− cos y = −2 sin

(
x+y
2

)
sin
(
x−y
2

)
we get

i∆(q) · jq = it0
∑
δ̃,k

4

cot qδ̃
2
+ im−n

m+n

sin

(
2k+ q

2
δ̃

)
cos

(
qδ̃

2

)
c†kck+q

−t0(m− n)

m+ n

∑
δ̃,k

4

cot qδ̃
2
+ im−n

m+n

sin

(
2k+ q

2
δ̃

)
sin

(
qδ̃

2

)
c†kck+q . (C.115)

This can be further simplified as

i∆(q) · jq = 4it0
∑
k,δ̃

sin

(
2k+ q

2
δ̃

)
sin

(
qδ̃

2

)
c†kck+q . (C.116)

This is equal to F [div jr](q), as seen from Eqs. (C.112) and (C.96). This completes our proof.
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C.7 Some Properties of the (Paramagnetic) Current Operator

Compact Notation for all (Paramagnetic) Current Operators
One universal property for the paramagnetic currents in Eqs. (C.26), (C.50), (C.61) and (C.108) is the
fact that all of them can be written in the form:

ji(q) =
∑
k

c†kγi(k+ q,k)ck+q , (C.117)

where

γi(k+ q,k) =
it0

m+ n

∑
δ̃

[
−mei(k+q)δ̃ − neikδ̃ +me−ikδ̃ + ne−i(k+q)δ̃

]
δ̃, (C.118)

in the case of a lattice, while in the continuum

γi(k+ q,k) =
1

m0

(
k+

q

2
,
)

(C.119)

where m0 is the mass of the electron. Furthermore, even the density operator is of that form

n(q) =
∑
r

e−iqrc†rcr =
1

N

∑
r,k1,k2

e−ir(q+k1−k2)c†k1
ck2 =

∑
k

c†kck+q . (C.120)

This motivates the introduction of 4-vector notation, with j0(q) = n(q) γ0(k+ q,k) = 1, and metric
η = [−1, 1, 1, 1]

jµ(q) =
∑
k

c†kγ
µ(k+ q,k)ck+q . (C.121)

In general, we see that γµ satisfies

γµ(k+ q,k) = γµ(k,k+ q)∗. (C.122)

Furthermore, we can also state the continuity equation in the 4-vector notation, which is valid both for
a continuum and on a lattice

∆µ(q)jµ(q) = 0, (C.123)

where we used the 4-momentum q. The zeroth component of ∆µ(q) is given by

∆0(q) = q0 (C.124)

while other three components correspond to ∆i(q) from Eq. (C.110).

Remark 44. In the real space formulation, q0 = ωq, while q0 = iωq in the Matsubara space.

Ward Identity for the Special case of a Free Theory
From Eqs. (C.98) and (C.99) we can easily derive one of the special cases of the Ward identity:

∆µ(q)γµ(k + q, k) = εk+q − εk − q0 = G(k)−1 −G(k + q)−1. (C.125)
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Appendix D - Using Continued Fraction Expansion for Representing Diagonal Elements of the
Inverse of Tridiagonal Matrix

D
Using Continued Fraction Expansion for Representing

Diagonal Elements of the Inverse of Tridiagonal Matrix

D.1 Statement of the Problem and Introduction of Notation
Definition 1. A matrix is tridiagonal if the only non-zero elements are the ones that are located on its
main diagonal and the first diagonals above and below the main diagonal

M =


a0 b1 0 0 0 . . .
b1 a1 b2 0 0 . . .
0 b2 a2 b3 0 . . .
0 0 b3 a3 b4 . . .
...

...
...

...
... . . .

 . (D.1)

Remark 45. We use the convention in which the indices ofN×N matrix are going from i = 0 . . . N−1.

Our task is to show how can the elements (M−1)nn be expressed analytically in terms of the continued
fraction expansion. From the standard linear algebra course, we know that

(M−1)nn =
M

n
n

det(M)
, (D.2)

where Mn
n is the determinant of the matrix obtained by deleting the n-th row and n-th column of

matrix M . Before calculating these quantities, we introduce a notation that will make our formulas
more compact. Hence, we define

Definition 2. Minor of the second kindM i1i2...
j1j2...

is a determinant of matrix that is obtained by deleting
rows i1, i2 . . . and columns j1, j2 . . . from a square matrix M .

Definition 3. Let:

D0 ≡ det(M) (D.3a)

D1 ≡M
0
0 (D.3b)

D2 ≡M
01
01 (D.3c)

...

Dn ≡M
01...n−1
01...n−1 (D.3d)

...
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Definition 4. Let M be a square matrix, while i1, i2 . . . in and j1, j2 . . . jn are the indices that denote
rows and columns, respectively. Then, a minor of the first kind M̃ i1i2...in

j1j2...jn
represents a determinant of a

n× n matrix, which is obtained by extracting the elements of M which are situated at the intersection
of rows i1, i2 . . . and columns j1, j2 . . . .

For example, M̃ i
j is equal to the element of matrix M that is situated at i-th row and j-th column. On

the other hand, M̃ i1i2
j1j2

is a determinant of 2× 2 matrix. Let us now create a definition, analogous to
Def. 3, only this time for the minors of the first kind.

Definition 5. Let:

D̃0 ≡ 1 (D.4a)

D̃1 ≡ M̃0
0 (D.4b)

D̃2 ≡ M̃01
01 (D.4c)

...

D̃n ≡ M̃01...n−1
01...n−1 (D.4d)

...

for arbitrary positive n. If n < 0, then D̃n ≡ 0.

D.2 Some Useful Identities

As we already noted, (M−1)nn can be evaluated using the Eq. (D.2), which, using our new notation,
can be expressed as follows

(M−1)nn =
M

n
n

D0

, (D.5)

To calculate this, we follow a four-step process:

1. ExpressMn
n in terms of Dn and D̃n.

2. Derive the recurrence relation for Dn.

3. Derive the recurrence relation for D̃n.

4. Express D0 in terms of Dn and D̃n.

Let us do this step by step.

ExpressingMn
n in terms of Dn and D̃n.

Using the fact that the determinant of the block diagonal matrix is simply given by the product of the
determinants of each block, we see that
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M
n
n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 b1 0 · · · 0 0 0 · · · 0 0
b1 a1 b2 · · · 0 0 0 · · · 0 0
0 b2 a2 · · · 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · bn−1 an−1 bn 0 0 · · ·
0 0 0 · · · 0 bn an bn+1 0 · · ·
0 0 0 · · · 0 0 bn+1 an+1 bn+2 · · ·
0 0 0 · · · 0 0 0 bn+2 an+2 · · ·
0 0 0 · · · 0 0 0 0 bn+3 · · ·
0 0 0 · · · 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
... . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= D̃nDn+1. (D.6)

Recurrence Relation for Dn

Let us first start from D0, and expand this matrix along the i = 0 column

D0 =

∣∣∣∣∣∣∣∣∣
a0 b1 0 0 · · ·
b1 a1 b2 0 · · ·
0 b2 a2 b3 · · ·
...

...
...

... . . .

∣∣∣∣∣∣∣∣∣ = a0D1 − b1

∣∣∣∣∣∣∣∣∣
b1 0 0 0 · · ·
b2 a2 b3 0 · · ·
0 b3 a3 b4 · · ·
...

...
...

... . . .

∣∣∣∣∣∣∣∣∣ = a0D1 − b21D2. (D.7)

However, since Dn has the same form as D0, we can immediately conclude that

Dn = anDn+1 − b2n+1Dn+2. (D.8)

Recurrence Relation for D̃n

Let us expand D̃n along the last row

D̃n =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 b1 0 · · · 0 0 0
b1 a1 b2 · · · 0 0 0
0 b2 a2 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · bn−2 an−2 bn−1

0 0 0 · · · 0 bn−1 an−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= an−1D̃n−1

− bn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 b1 0 · · · 0 0 0
b1 a1 b2 · · · 0 0 0
0 b2 a2 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · bn−3 an−3 bn−2

0 0 0 · · · 0 0 bn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= an−1D̃n−1 − b2n−1D̃n−2. (D.9)

Expressing D0 in terms of Dn and D̃n

Theorem 9. For n ≥ 0, it holds that

D0 = DnD̃n − b2nD̃n−1Dn+1. (D.10)
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Proof. For n = 0, this is trivial since D̃0 = 1 and D̃−1 = 0. For n = 1, this is also easy to see as a
consequence of Eq. (D.7), since D̃1 = a0. For other n, we can proceed using the method of induction:
we assume that Eq. (D.10) holds for n, and try to prove that it holds for n+ 1. We will do this using
the recurrence relations in Eqs. (D.8) and (D.9)

D0 = D̃nDn − b2nD̃n−1Dn+1

= D̃nDn − b2nD̃n−1

Dn + b2n+1Dn+2

an

= D̃n

(
Dn + b2n+1Dn+2

)
− b2n+1D̃nDn+2 −

b2n
an
D̃n−1

(
Dn + b2n+1Dn+2

)
=
(
anD̃n − b2nD̃n−1

) Dn + b2n+1Dn+2

an
− b2n+1D̃nDn+2

= Dn+1D̃n+1 − b2n+1D̃nDn+2. (D.11)

We obtained that Eq. (D.10) holds for n+ 1. Thus, this completes the proof.

D.3 Evaluation of (M−1)nn for Arbitrary n
Now, we finally have everything we need (see Eqs. (D.5), (D.6), (D.8), (D.9), and (D.10)) to derive
analytical expression for (M−1)nn, in terms of the continued fraction expansion

(M−1)nn =
M

n
n

D0

=
D̃nDn+1

D̃nDn − b2nD̃n−1Dn+1

=
1

Dn

Dn+1
− b2n

D̃n−1

D̃n

=
1

anDn+1−b2n+1Dn+2

Dn+1
− b2n

D̃n−1

an−1D̃n−1−b2n−1D̃n−2

=
1

an − b2n+1
Dn+2

an+1Dn+2−b2n+2Dn+3
− b2n

an−1−b2n−1

D̃n−2

an−2D̃n−2−b2n−2D̃n−3

=
1

an − b2n+1

an+1−
b2n+2

an+2−
bn+3

...

− b2n

an−1−
b2n−1

an−2−
b2n−2

...
a0

. (D.12)

As we see, there are two continued fractions in the denominator. In the first, the index keeps increasing,
so it is infinite in the case when the matrix M is also infinite. The second continued fraction is always
finite.
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E
Some General Operator Identities

In order to make the subsequent equations shorter, it is useful to introduce the following notation

G̃ = G(iνn = 0) =

∫ β

0

dτG(−iτ), (E.1)

where G(−iτ) is an arbitrary operator in imaginary time τ = it. Now we can formulate

Theorem 10 (Kubo identity). Let G be an arbitrary operator and ρ̄0 the density matrix. Then

[G, ρ̄0] = −iρ̄0 ˜̇G. (E.2)

Proof.

[G, ρ̄0] =
1

Z [G, e−βH ] =
1

Z
(
Ge−βH − e−βHG

)
=
e−βH

Z
(
eβHGe−βH −G

)
= ρ̄0 (G(−iβ)−G(0)) = ρ̄0

∫ β

0

dτ
∂

∂τ
G(−iτ) = −iρ̄0

∫ β

0

dτĠ(−iτ)

= −iρ̄0 ˜̇G. (E.3)

Another useful identity can be formulated as follows

Theorem 11. Let G1 and G2 be arbitrary operators. Then

⟨G̃1G2⟩0 = ⟨G̃2G1⟩0, (E.4)

where the expectation value is defined as ⟨G⟩0 = Tr{ρ̄0G}.

Proof. Starting from

⟨G̃1G2⟩0 (E.1)
=

∫ β

0

dτ⟨G1(−iτ)G2⟩0 λ=β−τ
=

∫ β

0

dλTr

[
e−βH

Z eiH(iλ−iβ)G1e
−iH(iλ−iβ)G2

]
, (E.5)

and using the cyclic property of the trace, we obtain

⟨G̃1G2⟩0 =
∫ β

0

dλTr

[
e−βH

Z G2e
−HλG1e

Hλ

]
=

∫ β

0

dλTr
[
ρ̄0e

HλG2e
−HλG1

]
=

∫ β

0

dλ⟨G2(−iλ)G1⟩0 = ⟨G̃2G1⟩0. (E.6)
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Spectral Representation
Definition 6. Spectral density JAB(ω) of the correlation function ⟨AB(t)⟩0 is defined such that it
satisfies

⟨AB(t)⟩0 =
∫ ∞

−∞

dω

2π
JAB(ω)e

−iωt. (E.7)

Equivalently, JAB(ω) could also be defined as

JAB(ω) =

∫ ∞

−∞
dteiωt⟨AB(t)⟩0, (E.8)

which is just an inverse Fourier transform of Eq. (E.7). Now, the fluctuation-dissipation theorem can
be formulated as follows

Theorem 12.
⟨B(t)A⟩0 =

∫ ∞

−∞

dω

2π
JAB(ω)e

βωe−iωt. (E.9)

Proof.

⟨B(t)A⟩0 =
1

ZTr
[
e−βHeitHBe−itHA

]
=

1

ZTr
[
ei(t+iβ)HBe−i(t+iβ)He−βHA

]
= ⟨AB(t+ iβ)⟩0 (E.7)

=

∫ ∞

−∞

dω

2π
JAB(ω)e

−iω(t+iβ). (E.10)
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F
Spectral Sum Rules: Numerical DMFT vs Analytical Results

Here, we numerically calculate the spectral sum rules from the DMFT, in a wide range of parameter
regimes, and compare them to the results obtained using the exact expressions from Eq. (2.15) of
Part II. The results are shown in Tables F.1–F.17. We see that there is a remarkable agreement in all the
regimes we examined, which span from weak to strong coupling and from low to high temperatures.
This is just another demonstration of the quality of the DMFT results.
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Table F.1: Spectral sum rules for ω0 = 1.0, g = 1.0 at different temperatures.

n
T = 0.3 T = 0.5 T = 0.7

Exact DMFT Exact DMFT Exact DMFT
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 5.07× 100 5.06× 100 5.31× 100 5.31× 100 5.63× 100 5.63× 100

3 −1.13× 101 −1.13× 101 −1.22× 101 −1.22× 101 −1.35× 101 −1.35× 101

4 3.16× 101 3.15× 101 3.69× 101 3.69× 101 4.44× 101 4.44× 101

5 −6.57× 101 −6.55× 101 −8.18× 101 −8.18× 101 −1.06× 102 −1.06× 102

6 2.24× 102 2.23× 102 3.07× 102 3.07× 102 4.43× 102 4.43× 102

7 −3.18× 102 −3.14× 102 −5.10× 102 −5.07× 102 −8.50× 102 −8.45× 102

8 2.07× 103 2.07× 103 3.40× 103 3.40× 103 5.95× 103 5.96× 103

T = 1.0 T = 2.0 T = 3.0
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 6.16× 100 6.16× 100 8.08× 100 8.08× 100 1.01× 101 1.01× 101

3 −1.57× 101 −1.57× 101 −2.33× 101 −2.33× 101 −3.12× 101 −3.12× 101

4 5.85× 101 5.85× 101 1.23× 102 1.23× 102 2.13× 102 2.13× 102

5 −1.52× 102 −1.52× 102 −3.85× 102 −3.85× 102 −7.32× 102 −7.32× 102

6 7.42× 102 7.42× 102 2.76× 103 2.76× 103 6.87× 103 6.87× 103

7 −1.67× 103 −1.66× 103 −8.17× 103 −8.14× 103 −2.31× 104 −2.30× 104

8 1.29× 104 1.29× 104 8.63× 104 8.62× 104 3.11× 105 3.11× 105

T = 5.0 T = 7.0 T = 10.0
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 1.40× 101 1.40× 101 1.80× 101 1.80× 101 2.40× 101 2.40× 101

3 −4.71× 101 −4.71× 101 −6.31× 101 −6.31× 101 −8.71× 101 −8.71× 101

4 4.64× 102 4.64× 102 8.12× 102 8.12× 102 1.51× 103 1.51× 103

5 −1.76× 103 −1.76× 103 −3.24× 103 −3.24× 103 −6.30× 103 −6.30× 103

6 2.42× 104 2.42× 104 5.86× 104 5.86× 104 1.55× 105 1.55× 105

7 −9.19× 104 −9.17× 104 −2.36× 105 −2.35× 105 −6.53× 105 −6.52× 105

8 1.78× 106 1.78× 106 5.95× 106 5.95× 106 2.22× 107 2.22× 107
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Table F.2: Sum rules for ω0 = 1, g =
√
2 at different temperatures.

n
T = 0.3 T = 0.5 T = 1.0

Exact DMFT Exact DMFT Exact DMFT
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 6.15× 100 6.15× 100 6.63× 100 6.63× 100 8.33× 100 8.33× 100

3 −1.46× 101 −1.46× 101 −1.65× 101 −1.65× 101 −2.33× 101 −2.33× 101

4 5.41× 101 5.41× 101 6.81× 101 6.81× 101 1.29× 102 1.29× 102

5 −1.10× 102 −1.10× 102 −1.54× 102 −1.54× 102 −3.60× 102 −3.60× 102

6 6.07× 102 6.08× 102 9.38× 102 9.38× 102 2.92× 103 2.92× 103

7 −4.07× 102 −3.99× 102 −1.06× 103 −1.05× 103 −6.11× 103 −6.07× 103

8 1.03× 104 1.03× 104 1.89× 104 1.89× 104 9.41× 104 9.41× 104

T = 3.0 T = 5.0 T = 10.0
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 1.61× 101 1.61× 101 2.41× 101 2.41× 101 4.40× 101 4.40× 101

3 −5.44× 101 −5.44× 101 −8.63× 101 −8.63× 101 −1.66× 102 −1.66× 102

4 6.30× 102 6.30× 102 1.52× 103 1.52× 103 5.42× 103 5.42× 103

5 −2.34× 103 −2.34× 103 −6.11× 103 −6.11× 103 −2.34× 104 −2.34× 104

6 3.91× 104 3.91× 104 1.55× 105 1.55× 105 1.09× 106 1.09× 106

7 −1.36× 105 −1.36× 105 −6.09× 105 −6.08× 105 −4.74× 106 −4.74× 106

8 3.42× 106 3.42× 106 2.22× 107 2.22× 107 3.10× 108 3.10× 108

Table F.3: Sum rules for ω0 = 1, g = 0.5 at different temperatures.

n
T = 0.3 T = 0.5 T = 0.7

Exact DMFT Exact DMFT Exact DMFT
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 4.27× 100 4.27× 100 4.33× 100 4.33× 100 4.41× 100 4.41× 100

3 −8.82× 100 −8.82× 100 −9.06× 100 −9.06× 100 −9.38× 100 −9.38× 100

4 1.92× 101 1.92× 101 2.02× 101 2.02× 101 2.16× 101 2.16× 101

5 −3.94× 101 −3.94× 101 −4.24× 101 −4.24× 101 −4.65× 101 −4.65× 101

6 8.90× 101 8.90× 101 9.96× 101 9.96× 101 1.15× 102 1.15× 102

7 −1.74× 102 −1.74× 102 −2.02× 102 −2.02× 102 −2.43× 102 −2.42× 102

8 4.33× 102 4.33× 102 5.33× 102 5.33× 102 6.86× 102 6.86× 102

T = 1.0 T = 3.0 T = 5.0
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 4.54× 100 4.54× 100 5.51× 100 5.51× 100 6.51× 100 6.51× 100

3 −9.91× 100 −9.91× 100 −1.38× 101 −1.38× 101 −1.78× 101 −1.78× 101

4 2.40× 101 2.40× 101 4.46× 101 4.46× 101 7.15× 101 7.15× 101

5 −5.38× 101 −5.38× 101 −1.22× 102 −1.22× 102 −2.19× 102 −2.19× 102

6 1.43× 102 1.43× 102 4.75× 102 4.75× 102 1.11× 103 1.11× 103

7 −3.21× 102 −3.20× 102 −1.37× 103 −1.36× 103 −3.59× 103 −3.58× 103

8 1.00× 103 1.00× 103 6.73× 103 6.72× 103 2.35× 104 2.35× 104
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Table F.4: Sum rules for ω0 = 1, g = 0.75 at different temperatures.

n
T = 0.3 T = 0.7 T = 1.0

Exact DMFT Exact DMFT Exact DMFT
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.01× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 4.60× 100 4.62× 100 4.92× 100 4.92× 100 5.22× 100 5.22× 100

3 −9.85× 100 −9.88× 100 −1.11× 101 −1.11× 101 −1.23× 101 −1.23× 101

4 2.39× 101 2.40× 101 3.00× 101 3.00× 101 3.65× 101 3.65× 101

5 −4.96× 101 −4.97× 101 −6.83× 101 −6.83× 101 −8.88× 101 −8.88× 101

6 1.33× 102 1.33× 102 2.14× 102 2.14× 102 3.15× 102 3.15× 102

7 −2.36× 102 −2.36× 102 −4.45× 102 −4.43× 102 −7.25× 102 −7.22× 102

8 8.52× 102 8.56× 102 1.91× 103 1.91× 103 3.52× 103 3.52× 103

T = 3.0 T = 5.0 T = 10.0
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 7.41× 100 7.41× 100 9.64× 100 9.64× 100 1.53× 101 1.53× 101

3 −2.11× 101 −2.11× 101 −3.00× 101 −3.00× 101 −5.25× 101 −5.25× 101

4 9.97× 101 9.97× 101 1.94× 102 1.94× 102 5.63× 102 5.63× 102

5 −3.14× 102 −3.14× 102 −6.84× 102 −6.84× 102 −2.23× 103 −2.23× 103

6 1.94× 103 1.94× 103 5.93× 103 5.93× 103 3.30× 104 3.30× 104

7 −6.19× 103 −6.17× 103 −2.14× 104 −2.13× 104 −1.34× 105 −1.34× 105

8 5.25× 104 5.25× 104 2.55× 105 2.54× 105 2.72× 106 2.72× 106

Table F.5: Sum rules for ω0 = 1, g =
√
3 at different temperatures.

n
T = 0.4 T = 1.0 T = 2.0

Exact DMFT Exact DMFT Exact DMFT
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 7.54× 100 7.54× 100 1.05× 101 1.05× 101 1.62× 101 1.62× 101

3 −1.91× 101 −1.91× 101 −3.10× 101 −3.10× 101 −5.40× 101 −5.40× 101

4 9.46× 101 9.46× 101 2.28× 102 2.28× 102 6.38× 102 6.38× 102

5 −2.00× 102 −2.00× 102 −6.56× 102 −6.56× 102 −2.25× 103 −2.25× 103

6 1.66× 103 1.66× 103 7.51× 103 7.51× 103 3.97× 104 3.97× 104

7 −7.53× 102 −7.33× 102 −1.49× 104 −1.48× 104 −1.22× 105 −1.21× 105

8 4.47× 104 4.48× 104 3.55× 105 3.55× 105 3.50× 106 3.50× 106

T = 3.0 T = 5.0 T = 10.0
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 2.22× 101 2.22× 101 3.41× 101 3.41× 101 6.40× 101 6.40× 101

3 −7.77× 101 −7.77× 101 −1.25× 102 −1.25× 102 −2.45× 102 −2.45× 102

4 1.27× 103 1.27× 103 3.17× 103 3.17× 103 1.17× 104 1.17× 104

5 −4.85× 103 −4.85× 103 −1.31× 104 −1.31× 104 −5.13× 104 −5.13× 104

6 1.17× 105 1.17× 105 4.83× 105 4.82× 105 3.54× 106 3.54× 106

7 −4.13× 105 −4.12× 105 −1.92× 106 −1.92× 106 −1.55× 107 −1.54× 107

8 1.52× 107 1.52× 107 1.03× 108 1.03× 108 1.50× 109 1.50× 109
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Table F.6: Sum rules for ω0 = 0.2, g = 0.05 at different temperatures.

n
T = 0.3 T = 0.5 T = 0.7

Exact DMFT Exact DMFT Exact DMFT
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 4.01× 100 4.01× 100 4.01× 100 4.01× 100 4.02× 100 4.02× 100

3 −8.03× 100 −8.03× 100 −8.05× 100 −8.05× 100 −8.07× 100 −8.07× 100

4 1.61× 101 1.61× 101 1.62× 101 1.62× 101 1.62× 101 1.62× 101

5 −3.23× 101 −3.23× 101 −3.25× 101 −3.25× 101 −3.27× 101 −3.27× 101

6 6.48× 101 6.48× 101 6.54× 101 6.54× 101 6.60× 101 6.60× 101

7 −1.30× 102 −1.30× 102 −1.32× 102 −1.32× 102 −1.33× 102 −1.33× 102

8 2.61× 102 2.61× 102 2.65× 102 2.65× 102 2.69× 102 2.69× 102

T = 1.0 T = 3.0 T = 5.0
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 4.03× 100 4.03× 100 4.08× 100 4.08× 100 4.13× 100 4.13× 100

3 −8.10× 100 −8.10× 100 −8.30× 100 −8.30× 100 −8.50× 100 −8.50× 100

4 1.64× 101 1.64× 101 1.71× 101 1.71× 101 1.78× 101 1.78× 101

5 −3.30× 101 −3.30× 101 −3.51× 101 −3.51× 101 −3.72× 101 −3.72× 101

6 6.68× 101 6.68× 101 7.27× 101 7.27× 101 7.89× 101 7.89× 101

7 −1.35× 102 −1.35× 102 −1.50× 102 −1.50× 102 −1.67× 102 −1.67× 102

8 2.74× 102 2.74× 102 3.14× 102 3.14× 102 3.58× 102 3.58× 102

Table F.7: Sum rules for ω0 = 0.2, g = 0.2 at different temperatures.

n
T = 0.3 T = 0.5 T = 0.7

Exact DMFT Exact DMFT Exact DMFT
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 4.12× 100 4.12× 100 4.20× 100 4.20× 100 4.28× 100 4.28× 100

3 −8.49× 100 −8.49× 100 −8.80× 100 −8.80× 100 −9.12× 100 −9.12× 100

4 1.78× 101 1.78× 101 1.89× 101 1.89× 101 2.02× 101 2.02× 101

5 −3.71× 101 −3.71× 101 −4.05× 101 −4.05× 101 −4.43× 101 −4.43× 101

6 7.84× 101 7.84× 101 8.88× 101 8.88× 101 1.00× 102 1.00× 102

7 −1.65× 102 −1.65× 102 −1.93× 102 −1.93× 102 −2.26× 102 −2.25× 102

8 3.53× 102 3.53× 102 4.31× 102 4.30× 102 5.23× 102 5.22× 102

T = 1.0 T = 3.0 T = 5.0
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 4.40× 100 4.40× 100 5.20× 100 5.20× 100 6.00× 100 6.00× 100

3 −9.60× 100 −9.60× 100 −1.28× 101 −1.28× 101 −1.60× 101 −1.60× 101

4 2.21× 101 2.21× 101 3.71× 101 3.71× 101 5.60× 101 5.60× 101

5 −5.02× 101 −5.02× 101 −1.00× 102 −1.00× 102 −1.68× 102 −1.68× 102

6 1.20× 102 1.20× 102 3.18× 102 3.18× 102 6.71× 102 6.71× 102

7 −2.81× 102 −2.80× 102 −9.17× 102 −9.14× 102 −2.18× 103 −2.17× 103

8 6.91× 102 6.90× 102 3.18× 103 3.16× 103 9.86× 103 9.83× 103
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Table F.8: Sum rules for ω0 = 0.2, g = 0.5 at different temperatures.

n
T = 0.3 T = 0.5 T = 0.7

Exact DMFT Exact DMFT Exact DMFT
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 4.78× 100 4.78× 100 5.27× 100 5.27× 100 5.76× 100 5.76× 100

3 −1.11× 101 −1.11× 101 −1.30× 101 −1.30× 101 −1.50× 101 −1.50× 101

4 2.85× 101 2.85× 101 3.84× 101 3.84× 101 4.99× 101 4.99× 101

5 −7.04× 101 −7.04× 101 −1.04× 102 −1.04× 102 −1.44× 102 −1.44× 102

6 1.93× 102 1.93× 102 3.36× 102 3.36× 102 5.42× 102 5.42× 102

7 −4.98× 102 −4.97× 102 −9.66× 102 −9.63× 102 −1.68× 103 −1.68× 103

8 1.45× 103 1.44× 103 3.43× 103 3.42× 103 7.10× 103 7.08× 103

T = 1.0 T = 3.0 T = 5.0
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 6.51× 100 6.51× 100 1.15× 101 1.15× 101 1.65× 101 1.65× 101

3 −1.80× 101 −1.80× 101 −3.80× 101 −3.80× 101 −5.80× 101 −5.80× 101

4 6.99× 101 6.99× 101 2.90× 102 2.90× 102 6.60× 102 6.60× 102

5 −2.19× 102 −2.19× 102 −1.12× 103 −1.12× 103 −2.72× 103 −2.72× 103

6 9.90× 102 9.90× 102 1.10× 104 1.10× 104 4.11× 104 4.11× 104

7 −3.34× 103 −3.33× 103 −4.51× 104 −4.50× 104 −1.79× 105 −1.79× 105

8 1.75× 104 1.75× 104 5.60× 105 5.60× 105 3.52× 106 3.52× 106

Table F.9: Sum rules for ω0 = 0.2, g = 0.75 at different temperatures.

n
T = 0.3 T = 0.5 T = 0.7

Exact DMFT Exact DMFT Exact DMFT
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 5.75× 100 5.75× 100 6.85× 100 6.85× 100 7.96× 100 7.96× 100

3 −1.49× 101 −1.49× 101 −1.93× 101 −1.93× 101 −2.37× 101 −2.37× 101

4 4.93× 101 4.93× 101 7.99× 101 7.99× 101 1.18× 102 1.18× 102

5 −1.41× 102 −1.41× 102 −2.55× 102 −2.55× 102 −4.05× 102 −4.05× 102

6 5.27× 102 5.27× 102 1.25× 103 1.25× 103 2.46× 103 2.46× 103

7 −1.60× 103 −1.60× 103 −4.26× 103 −4.24× 103 −9.01× 103 −8.98× 103

8 6.77× 103 6.75× 103 2.46× 104 2.46× 104 6.65× 104 6.64× 104

T = 1.0 T = 3.0 T = 5.0
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 9.64× 100 9.64× 100 2.09× 101 2.09× 101 3.21× 101 3.21× 101

3 −3.05× 101 −3.05× 101 −7.54× 101 −7.54× 101 −1.20× 102 −1.20× 102

4 1.90× 102 1.90× 102 1.11× 103 1.11× 103 2.78× 103 2.78× 103

5 −6.96× 102 −6.96× 102 −4.68× 103 −4.68× 103 −1.22× 104 −1.22× 104

6 5.47× 103 5.47× 103 9.30× 104 9.30× 104 3.90× 105 3.90× 105

7 −2.14× 104 −2.13× 104 −4.13× 105 −4.12× 105 −1.78× 106 −1.78× 106

8 2.10× 105 2.10× 105 1.08× 107 1.08× 107 7.58× 107 7.58× 107
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Table F.10: Sum rules for ω0 = 0.2, g = 1.0 at different temperatures.

n
T = 0.3 T = 0.5 T = 0.7

Exact DMFT Exact DMFT Exact DMFT
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 7.11× 100 7.11× 100 9.07× 100 9.07× 100 1.11× 101 1.11× 101

3 −2.02× 101 −2.02× 101 −2.81× 101 −2.81× 101 −3.60× 101 −3.60× 101

4 8.79× 101 8.79× 101 1.63× 102 1.63× 102 2.63× 102 2.63× 102

5 −2.83× 102 −2.83× 102 −5.81× 102 −5.81× 102 −9.93× 102 −9.93× 102

6 1.47× 103 1.47× 103 4.23× 103 4.23× 103 9.33× 103 9.34× 103

7 −4.99× 103 −4.97× 103 −1.60× 104 −1.59× 104 −3.72× 104 −3.72× 104

8 3.11× 104 3.10× 104 1.45× 105 1.45× 105 4.46× 105 4.46× 105

T = 1.0 T = 3.0 T = 5.0
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 1.40× 101 1.40× 101 3.40× 101 3.40× 101 5.40× 101 5.40× 101

3 −4.79× 101 −4.79× 101 −1.28× 102 −1.28× 102 −2.08× 102 −2.08× 102

4 4.58× 102 4.58× 102 3.14× 103 3.14× 103 8.22× 103 8.22× 103

5 −1.82× 103 −1.82× 103 −1.38× 104 −1.38× 104 −3.69× 104 −3.69× 104

6 2.29× 104 2.29× 104 4.69× 105 4.69× 105 2.05× 106 2.05× 106

7 −9.60× 104 −9.58× 104 −2.14× 106 −2.14× 106 −9.53× 106 −9.53× 106

8 1.57× 106 1.57× 106 9.73× 107 9.73× 107 7.11× 108 7.11× 108

Table F.11: Sum rules for ω0 = 0.2, g =
√
2 at different temperatures.

n
T = 0.3 T = 0.5 T = 0.7

Exact DMFT Exact DMFT Exact DMFT
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 1.02× 101 1.02× 101 1.41× 101 1.41× 101 1.81× 101 1.81× 101

3 −3.25× 101 −3.25× 101 −4.81× 101 −4.81× 101 −6.40× 101 −6.40× 101

4 2.18× 102 2.18× 102 4.65× 102 4.65× 102 8.08× 102 8.08× 102

5 −7.91× 102 −7.90× 102 −1.83× 103 −1.83× 103 −3.32× 103 −3.31× 103

6 6.81× 103 6.80× 103 2.34× 104 2.34× 104 5.66× 104 5.65× 104

7 −2.57× 104 −2.55× 104 −9.60× 104 −9.56× 104 −2.41× 105 −2.40× 105

8 2.85× 105 2.83× 105 1.61× 106 1.61× 106 5.46× 106 5.44× 106

T = 1.0 T = 3.0 T = 5.0
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 2.41× 101 2.41× 101 6.40× 101 6.40× 101 1.04× 102 1.04× 102

3 −8.79× 101 −8.79× 101 −2.48× 102 −2.48× 102 −4.08× 102 −4.08× 102

4 1.50× 103 1.50× 103 1.17× 104 1.17× 104 3.14× 104 3.14× 104

5 −6.39× 103 −6.39× 103 −5.26× 104 −5.26× 104 −1.44× 105 −1.44× 105

6 1.50× 105 1.50× 105 3.49× 106 3.49× 106 1.57× 107 1.57× 107

7 −6.61× 105 −6.60× 105 −1.63× 107 −1.62× 107 −7.39× 107 −7.39× 107

8 2.07× 107 2.07× 107 1.46× 109 1.46× 109 1.09× 1010 1.09× 1010
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Table F.12: Sum rules for ω0 = 0.5, g = 0.05 at different temperatures.

n
T = 0.3 T = 0.5 T = 0.7

Exact DMFT Exact DMFT Exact DMFT
0 1.00× 100 1.09× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.18× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 4.00× 100 4.37× 100 4.01× 100 4.00× 100 4.01× 100 4.01× 100

3 −8.01× 100 −8.74× 100 −8.02× 100 −8.02× 100 −8.03× 100 −8.03× 100

4 1.61× 101 1.75× 101 1.61× 101 1.61× 101 1.61× 101 1.61× 101

5 −3.21× 101 −3.50× 101 −3.22× 101 −3.22× 101 −3.23× 101 −3.23× 101

6 6.43× 101 7.02× 101 6.46× 101 6.45× 101 6.48× 101 6.48× 101

7 −1.29× 102 −1.40× 102 −1.29× 102 −1.29× 102 −1.30× 102 −1.30× 102

8 2.58× 102 2.82× 102 2.60× 102 2.59× 102 2.61× 102 2.61× 102

T = 1.0 T = 3.0 T = 5.0
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 4.01× 100 4.01× 100 4.03× 100 4.03× 100 4.05× 100 4.05× 100

3 −8.04× 100 −8.04× 100 −8.12× 100 −8.12× 100 −8.20× 100 −8.20× 100

4 1.61× 101 1.61× 101 1.64× 101 1.64× 101 1.67× 101 1.67× 101

5 −3.24× 101 −3.24× 101 −3.32× 101 −3.32× 101 −3.41× 101 −3.41× 101

6 6.51× 101 6.51× 101 6.75× 101 6.75× 101 6.99× 101 6.99× 101

7 −1.31× 102 −1.31× 102 −1.37× 102 −1.37× 102 −1.43× 102 −1.43× 102

8 2.63× 102 2.63× 102 2.80× 102 2.80× 102 2.97× 102 2.97× 102

Table F.13: Sum rules for ω0 = 0.5, g = 0.2 at different temperatures.

n
T = 0.3 T = 0.5 T = 0.7

Exact DMFT Exact DMFT Exact DMFT
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 4.06× 100 4.06× 100 4.09× 100 4.09× 100 4.12× 100 4.12× 100

3 −8.21× 100 −8.21× 100 −8.33× 100 −8.33× 100 −8.45× 100 −8.45× 100

4 1.68× 101 1.68× 101 1.72× 101 1.72× 101 1.76× 101 1.76× 101

5 −3.41× 101 −3.41× 101 −3.53× 101 −3.53× 101 −3.66× 101 −3.66× 101

6 6.99× 101 6.99× 101 7.34× 101 7.34× 101 7.73× 101 7.73× 101

7 −1.42× 102 −1.42× 102 −1.52× 102 −1.52× 102 −1.62× 102 −1.62× 102

8 2.93× 102 2.93× 102 3.18× 102 3.18× 102 3.47× 102 3.47× 102

T = 1.0 T = 3.0 T = 5.0
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 4.16× 100 4.16× 100 4.48× 100 4.48× 100 4.80× 100 4.80× 100

3 −8.63× 100 −8.63× 100 −9.90× 100 −9.90× 100 −1.12× 101 −1.12× 101

4 1.83× 101 1.83× 101 2.35× 101 2.35× 101 2.92× 101 2.92× 101

5 −3.87× 101 −3.87× 101 −5.45× 101 −5.45× 101 −7.33× 101 −7.33× 101

6 8.36× 101 8.36× 101 1.36× 102 1.36× 102 2.08× 102 2.08× 102

7 −1.79× 102 −1.79× 102 −3.30× 102 −3.29× 102 −5.51× 102 −5.50× 102

8 3.95× 102 3.95× 102 8.73× 102 8.71× 102 1.70× 103 1.70× 103
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Table F.14: Sum rules for ω0 = 0.5, g = 0.5 at different temperatures.

n
T = 0.3 T = 0.5 T = 0.7

Exact DMFT Exact DMFT Exact DMFT
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 4.37× 100 4.37× 100 4.54× 100 4.54× 100 4.73× 100 4.73× 100

3 −9.34× 100 −9.34× 100 −1.00× 101 −1.00× 101 −1.08× 101 −1.08× 101

4 2.11× 101 2.11× 101 2.41× 101 2.41× 101 2.75× 101 2.75× 101

5 −4.62× 101 −4.62× 101 −5.53× 101 −5.53× 101 −6.62× 101 −6.62× 101

6 1.08× 102 1.08× 102 1.40× 102 1.40× 102 1.81× 102 1.81× 102

7 −2.37× 102 −2.37× 102 −3.28× 102 −3.27× 102 −4.49× 102 −4.48× 102

8 5.74× 102 5.74× 102 8.80× 102 8.78× 102 1.33× 103 1.33× 103

T = 1.0 T = 3.0 T = 5.0
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 5.02× 100 5.02× 100 7.01× 100 7.01× 100 9.00× 100 9.00× 100

3 −1.20× 101 −1.20× 101 −1.99× 101 −1.99× 101 −2.79× 101 −2.79× 101

4 3.32× 101 3.32× 101 8.55× 101 8.55× 101 1.62× 102 1.62× 102

5 −8.49× 101 −8.49× 101 −2.76× 102 −2.76× 102 −5.79× 102 −5.79× 102

6 2.59× 102 2.59× 102 1.43× 103 1.43× 103 4.24× 103 4.24× 103

7 −6.92× 102 −6.90× 102 −4.93× 103 −4.92× 103 −1.62× 104 −1.61× 104

8 2.35× 103 2.34× 103 3.10× 104 3.09× 104 1.49× 105 1.49× 105

Table F.15: Sum rules for ω0 = 0.2, g = 0.75 at different temperatures.

n
T = 0.3 T = 0.5 T = 0.7

Exact DMFT Exact DMFT Exact DMFT
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 4.82× 100 4.82× 100 5.22× 100 5.22× 100 5.64× 100 5.64× 100

3 −1.10× 101 −1.10× 101 −1.26× 101 −1.26× 101 −1.43× 101 −1.43× 101

4 2.87× 101 2.87× 101 3.67× 101 3.67× 101 4.64× 101 4.64× 101

5 −6.79× 101 −6.79× 101 −9.41× 101 −9.41× 101 −1.27× 102 −1.27× 102

6 1.90× 102 1.90× 102 3.05× 102 3.05× 102 4.73× 102 4.73× 102

7 −4.49× 102 −4.47× 102 −7.97× 102 −7.94× 102 −1.34× 103 −1.33× 103

8 1.39× 103 1.39× 103 2.97× 103 2.97× 103 5.87× 103 5.86× 103

T = 1.0 T = 3.0 T = 5.0
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 6.30× 100 6.30× 100 1.08× 101 1.08× 101 1.53× 101 1.53× 101

3 −1.69× 101 −1.69× 101 −3.48× 101 −3.48× 101 −5.28× 101 −5.28× 101

4 6.34× 101 6.34× 101 2.49× 102 2.49× 102 5.56× 102 5.56× 102

5 −1.88× 102 −1.88× 102 −9.26× 102 −9.26× 102 −2.23× 103 −2.23× 103

6 8.37× 102 8.37× 102 8.59× 103 8.59× 103 3.15× 104 3.15× 104

7 −2.59× 103 −2.58× 103 −3.36× 104 −3.35× 104 −1.32× 105 −1.32× 105

8 1.39× 104 1.39× 104 4.03× 105 4.03× 105 2.46× 106 2.46× 106
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Table F.16: Sum rules for ω0 = 0.5, g = 1.0 at different temperatures.

n
T = 0.3 T = 0.5 T = 0.7

Exact DMFT Exact DMFT Exact DMFT
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 5.47× 100 5.47× 100 6.16× 100 6.16× 100 6.92× 100 6.92× 100

3 −1.34× 101 −1.34× 101 −1.62× 101 −1.62× 101 −1.92× 101 −1.92× 101

4 4.13× 101 4.13× 101 5.89× 101 5.89× 101 8.11× 101 8.11× 101

5 −1.06× 102 −1.06× 102 −1.66× 102 −1.66× 102 −2.47× 102 −2.47× 102

6 3.73× 102 3.73× 102 7.20× 102 7.20× 102 1.28× 103 1.28× 103

7 −9.22× 102 −9.18× 102 −2.02× 103 −2.01× 103 −3.93× 103 −3.92× 103

8 3.97× 103 3.96× 103 1.10× 104 1.09× 104 2.59× 104 2.59× 104

T = 1.0 T = 3.0 T = 5.0
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 8.08× 100 8.08× 100 1.60× 101 1.60× 101 2.40× 101 2.40× 101

3 −2.38× 101 −2.38× 101 −5.56× 101 −5.56× 101 −8.76× 101 −8.76× 101

4 1.22× 102 1.22× 102 6.19× 102 6.19× 102 1.50× 103 1.50× 103

5 −4.03× 102 −4.03× 102 −2.48× 103 −2.48× 103 −6.35× 103 −6.35× 103

6 2.61× 103 2.61× 103 3.74× 104 3.74× 104 1.50× 105 1.50× 105

7 −8.79× 103 −8.75× 103 −1.55× 105 −1.54× 105 −6.57× 105 −6.56× 105

8 7.35× 104 7.34× 104 3.11× 106 3.11× 106 2.09× 107 2.09× 107

Table F.17: Sum rules for ω0 = 0.5, g =
√
2 at different temperatures.

n
T = 0.3 T = 0.5 T = 0.7

Exact DMFT Exact DMFT Exact DMFT
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 6.93× 100 6.93× 100 8.33× 100 8.33× 100 9.84× 100 9.84× 100

3 −1.87× 101 −1.87× 101 −2.43× 101 −2.43× 101 −3.03× 101 −3.03× 101

4 7.95× 101 7.95× 101 1.30× 102 1.30× 102 1.97× 102 1.97× 102

5 −2.25× 102 −2.25× 102 −4.10× 102 −4.10× 102 −6.72× 102 −6.72× 102

6 1.21× 103 1.21× 103 2.85× 103 2.85× 103 5.79× 103 5.79× 103

7 −3.07× 103 −3.05× 103 −8.53× 103 −8.49× 103 −1.92× 104 −1.91× 104

8 2.34× 104 2.34× 104 8.31× 104 8.30× 104 2.30× 105 2.29× 105

T = 1.0 T = 3.0 T = 5.0
0 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100 1.00× 100

1 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100 −2.00× 100

2 1.22× 101 1.22× 101 2.81× 101 2.81× 101 4.40× 101 4.40× 101

3 −3.97× 101 −3.97× 101 −1.03× 102 −1.03× 102 −1.67× 102 −1.67× 102

4 3.28× 102 3.28× 102 2.09× 103 2.09× 103 5.39× 103 5.39× 103

5 −1.20× 103 −1.20× 103 −8.86× 103 −8.86× 103 −2.37× 104 −2.37× 104

6 1.34× 104 1.34× 104 2.51× 105 2.51× 105 1.08× 106 1.08× 106

7 −4.86× 104 −4.85× 104 −1.08× 106 −1.08× 106 −4.84× 106 −4.84× 106

8 7.50× 105 7.50× 105 4.19× 107 4.19× 107 3.00× 108 3.00× 108
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