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Abstract

A recently developed analytical method for systematic improvement of the convergence of path integrals is used to derive a
generalization of Euler's summation formula for path integrals. The fiiterms in this formula improve convergence of path
integrals to the continuum limit from/vV to 1/N”, whereN is the coarseness of the discretization. Monte Carlo simulations
performed on several different models show that the analytically derived speedup holds.
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1. Introduction and condensed matter physi&4]. Today, they are
used both analytically and numerica[~9] in many
Feynman’s path integral4,2] represent a compact  other areas of physics, in chemistry and materials sci-
and rich formalism for dealing with quantum theories. ence, as well as in quantitative finar{¢é@].
They have proved to be powerful tools for investi- Unfortunately we still have very little knowledge of
gating symmetries, deriving non-perturbative results, the precise mathematical properties of path integrals.
delineating connections between different theories and As a result only an extremely limited number of path
different sectors of theories. Their flexibility and intu- integrals can be solved exactly. Although the func-
itive appeal have allowed us to generalize quantization tional formalism has been instrumental for deriving
to ever more complicated systems and have led to amany general approximation techniques, along with a
rich cross fertilization of ideas between high energy host of model-specific approximations, there remain
many models of interest that need to be treated numer-

ically (e.g., using Monte Carlo simulations).
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worked at improving the convergence of path inte-
grals. Until recently the best available result for par-
tition functions of a generi&v-fold discretized theory
led to a ¥ N* convergenc§l1-13] A new systematic
analysis of the relation of discretizations of different
coarsenes§l4,15] has made it possible to dramati-
cally improve convergence for general transition am-
plitudes, not just partition functions. A result of this
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century did not have computers at their disposal or the
development of integration theory might have come
much later, i.e., they might have succumbed to doing
brute force numerical calculations of integrals of all

but the simplest functions. The problem with these hy-
pothetical numerical calculations would have been two
fold: they would have been inefficient (the discretized

sums converge slowly to the continuum value), and

investigation has been a procedure for constructing a they would have worked (thus quite probably slowing

series of effective action$'”) having the same contin-
uum limit as the starting actio$i, but which approach
that limit as Y N”. Explicit expressions for these ef-
fective actions have so far been constructedifat 9
[15,16] In the current Letter we will build on this
derivation (and simplify it to some extent) and will
cast the new analytical input in the form of a general-
ized Euler summation formula for path integrals. It is
our belief that the existence of such a general formula
strongly hints at the possibility of (currently unseen)
simplifications that might make it possible to set up
a rigorous theory of path integration. In Sectdmwe
present a simple derivation of Euler's summation for-
mula for ordinary integrals as a useful guide to the
generalization to path integrals that is given in Sec-
tions3 and 4

2. Euler summation formulafor ordinary
integrals

The current status of the development of the path
integral formalism is quite similar to that of ordinary
integrals before the setting up of integration theory by
Riemmann. In those days integrals were calculated di-
rectly from the defining formula, i.e., one looked at a
specific discretization of the integral (Darboux sum),
attempted to do the sum explicitly, and finally tried to
calculate the continuum limit. For example,

T
I[f]E/f(t)dtleim IN[f], where
0

N
INLf1=)_ ft)en, €N
n=1
ey = T/N andt, = ney. It goes without saying that

done this way, even the simplest ordinary integrals pre-

sented a challenge. The mathematicians of the 18th

down the further development of integration theory).
Luckily, this early numerical road was not open. The
last great step in the development of integration before
Riemmann was made by Euler.

Discretization is not unique. This makes it possible
to changef (¢) to some other function (adding terms
proportional toey, 612\/7 etc.) without changing the in-
tegral. Let us assume thgt(¢) is such an equivalent
function with the added property that the sum$ f*]
do not depend otV. In fact we shall present a way of
explicitly constructingf*(z) for any givenf(z). We
first look at the simple case gf(z) = 1. Now

N
In[1] = ZGN =T, 2
n=1

which is alreadyN-independent. Hence, in this case,
all the additional terms vanish. Note thét(¢) is com-
pletely determined by the original functigfr) (and
by ex), so that the additional terms necessarily depend
only on the derivativeg’, f”, etc.
The second step is to tak&r) =¢. In this case we
et

N

INl=) tnen =

n=1

T2

N(N+1) 1% T2
2N’

2 N2 2 3)

From this it follows thatly [r — %N] = %2 Therefore,
up to f” and higher derivatives of that all vanish for
linear f (1), we havef*(r) = f (1) — <& f/(1).

We continue this procedure by lookingtr) = r2.
In this case we find

_Nw+DEN+ TP

N
IN[IZ]ZZtanN— 3
prt 6 N
T3 713 T3
- . 4
3 Tov Tenz “)
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It follows that Iy [t2 — ent, — 2€2] = %3 In terms of

3€N

£ this gives £*(1) = £(1) — L £'(6) — 22 £(6) +

---. The additional terms now depend on higher pow-
ers ofey as well as on higher derivatives and are de-
termined by consideringy[73], and so on. In this way
we have constructed a procedure for findifitfz) for
any given f (). Remembering thaly[ f*] does not
depend oV we find

r N v N
O/ f)yde = ;f<rn>eN -~ 7N ;f/(ln)ézv

2¢2 N
- TN Z.f//(tn)EN + -
n=1

This is the well-known Euler summation formula. We
may also write it more compactly as

1A= In[fP]+ 0(eX), (6)

where £(P) is the truncation off* to the firstp terms.
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action of the theory. We focus on actions of the form

T
1
S= /dt (5‘72+ V(q)), ®)
0
whose naive discretization is simply
N-1 52
_ n
SN_Z(E +€NVn), 9

n=0

where s, = g1 — gn, Vo = V(Gn), and g, = 3 x
(gn+1+9gn). We use units in which and particle mass
equal 1.

As was the case with ordinary integrals the def-
inition of the path integrals also makes it necessary
to make the transition from the continuum to the dis-
cretized theory, a process that is far from unique. For
theories described by E(B) we have the freedom to
choose any point ify;, g»+1] in which to evaluate the
potential without changing physics — the discretized

The Euler formula gives the analytical relation be- amplitudes do differ, but they tend to the same con-

tween integrals and their discretized sums. Looked tinuum limit. The calculations we present turn out to
at numerically, this formula allows us to increase the b€ simplest in the mid-point prescription where the

speed of convergence of discretized expressions to thePotentialV' is evaluated aj, . A more important free-

continuum limit. For example, in the defining rela-
tion the discretized expressions differ from the contin-
uum by a term of orde0 (1/N). By using the Euler
sum formula withp terms we can reduce that error
to O(1/NP). All that is needed to do this is that the
integrand is differentiable — 1 times. the following

dom related to our choice of discretized action has to
do with the possibility of introducing additional terms
that explicitly vanish in the continuum limit. Actions
with such additional terms will be called effective.
For example, the terrTijfz‘ol eN(S,%g(cj,,), whereg is
regular wheney — 0, does not change the contin-

sections we will generalize the above approach to path uum physics since it goes over int [ dr 42g(q),

integrals.

3. General propertiesof path integrals

In the functional formalism the quantum mechan-
ical amplitudeA(a, b; T) = (ble"TH|a) is given in
terms of a path integral which is simply thé — oo
limit of the (V — 1)-fold integral expression

NJ2

(1)
The Euclidean time intervdl0, T] has been subdi-
vided into N equal time steps of lengthy = T/N,
with go = @ andgy = b. Sy is the naively discretized

An(a,b;T) = <2n€N

i.e., it vanishes as2. Such terms do not change the
physics, but they do affect the speed of convergence.
A systematic study of the relation between different
discretizations of the same path integral will allow
us to explicitly construct a series of effective actions
with progressively faster convergence to the contin-
uum. Before we do this we will parallel the derivation
in the previous section and derive some general prop-
erties of the best effective action.

The amplitudeA(a, b; T) of some theory with ac-
tion S satisfies

Aa,b;T)

= /dql dgqn_ 1A, qu_1;€n) - - A(q1, a; €n),
(10)
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for all N. This general relation is a direct consequence
of the linearity of states in a quantum theory. In anal-
ogy with ordinary integrals let us now suppose that
there exists an effective actio§i* that is equivalent

to S (i.e., that leads to the same continuum limit for

all path integrals) with the additional property that

its N-fold discretized amplitudd, (a, b; T) does not

depend onv, i.e., that satisfies
A%(a,b;T) = A(a,b; T). (11)

As was the case in the previous section we will in fact
construct a general procedure for evaluating this effec-
tive action. For actions of the form given in E&) we
may write the amplitude as

A(gn+1, qn; €N)
1/2 52
:( ) exp<—2—”>A(qn+1,qn;€N)» (12)
€N

where the reduced amplitude— 1 asey — 0. Writ-
ing Sy as

27T6N

N-1 2

* n_ * 1
= X (5 +eWi) (13)
and using EqH7), (10) and (11yve find
exp(—en W) = A(Gn+1. qn: €n). (14)

Note thatW,’ is reminiscent of some effective poten-
tial, so it should depend o0g,, however, from the
above relation we see that it must also depend,on

In addition,W* also has an explicit dependence on the
discrete time stepy, hence

WY =W*(8n, qn; €n)- (15)

As we have seen, the above functional form is a di-
rect consequence of the linearity of quantum theory.
The equivalence of andS* implies thatW* — V(g)
when ey and s go to zero. The final general prop-
erty of W* follows from the reality of amplitudes
in the Euclidean formalism. Using the hermiticity of
the Hamiltonian we find(a, b; T) = A(a, b; T)" =

ble TH|\a)T = (ale TH|b) = A(b,a;T). In terms

of W* this gives us

W*(Snv qn; €N) = W*(_(Sny qn; €N), (16)

or, said another way, only even powers &f are
present in the expansion &f *:
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W*(ana Cjn; EN)
= 20(Gn; €N) + 8281(Gn; €N) + 8222(Gn; €n)
o (17)

All the functionsgy, are regular in the — 0O limit. The
link to the starting theory is now simplyb(g,.; en) —
V(gn) asen goes to zero. This concludes the gen-
eral properties o¥*. The remaining properties will
be analyzed in the following section by studying
the relation of discretizations of different coarse-
ness.

4. Euler summation formulafor path integrals

We start by studying the relation between the
2N-fold and N-fold discretizations of the same the-
ory. From Eq(7) we see that we can write thev2fold
amplitude as amv-fold amplitude given in terms of a
new actionSy determined by

: o \N/2
e SN = (—) /dxl---de e S
TTEN

whereSay is the 2V-fold discretization of the starting
action. We have written theN>-fold discretized coor-
dinatesQg, Q1, ..., Q2y interms ofg’s andx’s in the
following way: Q2 = g and Q2,1 = x;. Note that
we havegg = a, gy = b, while the N — 1 remaining
g’s play the role of the dynamical coordinates in the
N-fold discretized theory. The's are theN remaining
intermediate points that we integrate over in EB).
It is not difficult to see that if we use the naively dis-
cretized actionSy one obtains forSy an expression
that is not of the same form &5y .

Having in mind the results of the previous section
it is best to use the effective action

(18)

N-1 52
* n
si= 2 (5

n=0

+6NW*(8n» dn; 6N)>, (19)

which gives the same result for both th& Zold and
N-fold discretizations. Therefore, in this case we get

. 2 N/2 .
e SN = <—> /dx1-~-de e Sav (20)
TTEN
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From this one easily finds

effNW*(lSns(;an)
+00

= YEexpy ——y
TEN €N

—00

_ €
x F(qn +y: ?N) (21)
where
2
——InF(x;en)
EN
qn+1 +X . X + ql’l
=go| —F=—e~v )+ &0 JEN
2 2
1+x
+ (gn+1 —x)2g1<q"+T; 6N>
x +
G —q,»zgl( o, eN) el (@)

The above integral equation can be solved for the
simple cases of a free particle and a harmonic oscil-
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1 @(- €
+ mggo (‘1}12
81(qn; €N)
. 1 _ €N 1 ,/._ _EN
3 _ €
+€N|:§g2(qn; ?N>

4
1 il = .EN
64g1 qn; 2 )

82(qn; €n)
_ 1 (- 1 @ e

1 nf = 'GN
+@81<4n,? .

In the above relations we expandggup tOe,z\,, g1

(24)

lator, and gives the well-known results. Note however up toey, etc. We also disregarded all the higlgeis.

that for a general case the integral in E21) is in a
form that is ideal for an asymptotic expansiv].
The time stegy is playing the role of small parame-
ter (in complete parallel to the roleplays in standard

The reason for this is that the short time propagation of
any theory satisfies,% o ey While the g, term enters
the action multiplied bys?. In general, if we wish to
expand the effective action td, we need to evaluate

semi-classical, or loop, expansion). As is usual, the only gq (up to 61{’,’1) and the remaining — 1 func-

above asymptotic expansion is carried through by first

Taylor expandingF (g, + y: %) aroundg, and then

tionsgx (Up tOEffl*k). The task of calculating the ef-

fective action to large powers ej; is time-consuming

by doing the remaining Gaussian integrals. Assuming and is best done with the help of a standard pack-

thatey < 1 (i.e.,N > T) we have

80(Gn; €n) +8281(Gn; €n) + 81 2(Gns €n) + -
1 X F@mn) & m
—— " In Z M(E_N) ) (23)
ev | = @) 4

Note that F@" (x;ey) denotes the corresponding
derivative with respect te. All that remains is to cal-
culate these expressions using E2R) and to expand
all the g;'s around the mid-poing,,. This is a straight
forward though tedious calculation. In this paper we
will illustrate the general procedure for calculatisity

by explicitly giving its expansion to orderfv:

80(qn; €n)

_ €N
=80<61n; ?)

age for algebraic calculations such as Mathematica.
Using Mathematica we determined the corresponding
expressions fop < 9.

Although the above system of recursive relations
is non-linear, it is in fact quite easy to solve if we
remember that the system itself was derived via an ex-
pansion irey . Having this in mind we first write all the
functions as expansions in powersef that are ap-
propriate to the levep we are working at. Fop = 3,
we have
20(Gn; €x) =V (Gn) + €x R1(Gn) + €5 R2(Gn),
81(gn; €N) = R3(qn) + €N Ra(qn),
82(qn; €N) = R5(qn). (25)

Putting this into Eq(24) we determine the functions
Ry to Rs5 in terms of V. The p = 3 level solution
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equals the solution that is found holds for all initial poten-
tials. The only requirement for the level solution
go=V +€N_” L2l - v’z n ﬂ is that the starting potential is differentiable 2- 2
12 "N 24 " 240) times. Solutions for larger values pfare a bit more
v e cumbersome, however, they are just as easy to use in
81= > +teN——==, simulations. We have found that the growth in com-
2‘(14) 480 plexity of the effective actions with increasinghas
g2 = V_ (26) little effect on computation time fop < 4, while sim-
1920 ulations withp = 9 are roughly ten times slower due
Note thatw* depends only on the initial potential to this. Hovx_/ever,_this is an extreme_ly sm_all price to
v and its derivatives (as well as e). One can sim- pay for a gain of eight orders of magnitude in the speed

ilarly calculate the effective actio§* to any desired of convergence. Expressions forgffective actions up to
level p. We denote the level truncation of the effec- 2 = 9 can be found on our web sife6].

tive action ass”). S® has the property that it§-fold The analytical derivations presented work equally

amplitudes deviate from the continuum expressions as Well in both the Euclidean and Minkowski formal-

0() ism (with appropriateée regularization), i.e., they are
N directly applicable to quantum systems as well as

Aa,b: Ty = AP (4, b: T) + 0(eh) 27) to statistical ones. However, the Monte Carlo simu-
’ k] - N ’ ’ N/

lations used to numerically document our analytical
Comparing this to Eq(6) we see that we have just results necessarily needed to be done in the Euclid-
derived the generalization of the Euler summation for- ean formalism. We analyzed in detail several mod-
mula to path integrals. Just as with the ordinary Euler els: the anharmonic oscillator with quartic coupling
formula it gives the relation between path integralsand V = %qz + },q“ and a particle moving in a modified
their discretizations to any given precision. Pdschl-Teller potential over a wide range of parame-

It is important to note that one solves for the ef- ters. In all cases we found agreement with EZy).

fective action at levep but once for all theories, i.e.,  Fig. lillustrates this behavior in the case of an anhar-
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Fig. 1. Deviations from the continuum Iimmg\f) — A| as functions ofN for p = 1,2,4 and 6 for an anharmonic oscillator with quartic
couplingi = 10, time of propagatioff = 1 froma =0tob = 1. Nyc was 92 x 10° for p =1, 2, 92 x 1010 for p = 4, and 368 x 10! for

p = 6. Dashed lines correspond to approprigté/ Jpolynomial fits to the data. Solid lines give the leadingvlbehavior. The levep curve
has a ¥ NP leading behavior.
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monic oscillator. We see that the level data indeed  also in progress. The derivation of higher-dimensional
differs from the continuum amplitudes as a polynomial analogues of integral equatigdl) does not seem to
starting with Y N?. The deviations from the contin- present a problem. The asymptotic expansion used to
uum limit |A§{,J) — A| become exceedingly small for ~ solve itis also directly generalizable. However, the al-
larger values ofp making it necessary to use ever gebraic recursive relations that determiié will be
larger values ofNyc so that the MC statistical er- more complex and may practically limit us to smaller
ror does not mask these extremely small deviations. values ofp.
For p = 6 we see that although we used an extremely
large number of MC sample®/f,c = 3.68x 10'1) the
statistical errors become of the same order as the de-References
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