Influence of interface roughness on relaxation rates and optical gain in a quantum cascade laser Milan Žeželj¹, Igor Stanković¹, Vitomir Milanović², and Jelena Radovanović²

¹Scientific Computing Laboratory, Institute of Physics Belgrade, Serbia ²School of Electrical Engineering, University of Belgrade, Serbia

contact: milan.zezelj@scl.rs

Introduction: We present a detailed theoretical analysis of LO-phonon and interface roughness scattering influence on the operation of GaAs/AlGaAs quantum cascade laser (QCL) in the presence of an intense external magnetic field. We observe strong variations in the life time of the upper state, population inversion and optical gain when magnetic field is increased. The positions and magnitude of peaks are found to be a result of the combined action of both studied scattering mechanisms and strongly influenced by temperature. Sill, incorporation of the interface roughness scattering mechanism into the model did not create new resonant peaks of the optical gain. We show that the decrease in the optical gain at elevated temperatures, is moderated by the occurrence of interface roughness

(3) Optical gain and rate equations

HL 85.54

population inversion

wavelength and the frequency of the emitted light material refractive index

scattering, which remains unchanged with increasing temperature.

(1) Quantum cascade laser (QCL) in magnetic field

transition matrix element: $d_{3 \rightarrow 2} = \int \eta_3(z) z \eta_2(z) dz$

(4) Rate equations

(2) Electron scattering rates

1) electron - LO - phonon scattering emission, absorption [1]: $\frac{1}{\tau_{(n_i,l_i) \to (n_f,l_f)}^{\text{LO}}} = \frac{2\pi}{\hbar} \sum_{\vec{q}} \left| \left\langle n_f, l_f, k_{x_f}, n_q \pm 1 \right| \hat{H}_{e-ph}(\vec{q}) \left| n_i, l_i, k_{x_i}, n_q \right\rangle \right|^2 J^{LO}$ $\frac{1}{\delta \sqrt{2\pi}} e^{-\frac{\left(E_{n_i,l_i} - E_{n_f,l_f} - \hbar\omega_{\rm LO}\right)^2}{2\delta^2}}$ $\hat{H}_{e-ph}(\vec{q}) = \sum_{\vec{q}} i \frac{g}{q} \left(e^{-i\vec{q}\cdot\vec{r}} a_{\vec{q}}^{\dagger} - e^{i\vec{q}\cdot\vec{r}} a_{\vec{q}} \right), \text{ Frölich factor:}$ phonon wave vector ni li creation and annihilation operators $\approx \hbar \omega_{\rm LO} \{ \} \{ a \}$ {**e**} emission and absorption (temperature dependence): $\frac{1}{\tau_{(n_f,l_f) \to (n_i,l_i)}^{\text{LO},\{a\}}}$ $\overline{\tau_{(n_i,l_i)\to(n_f,l_f)}^{\text{LO},\{e\}}} \frac{\overline{\hbar\omega_{\text{LO}}}}{e^{kT}}$ $n_f l_f$ **2)** electron - interface roughness (IR) scattering [2]:

3) total scattering (LO - phonon + interface roughness):

50 10 20 30 40 40 B[T]B[T]

References:

- [1] U. Ekenberg, *Phys. Rev. B* 40, 7714 (1989). [2] C. Becker, A. Vasanelli, C. Sirtori and G. Bastard, *Phys. Rev. B* 69, 115328 (2004).
- [3] A. Leuliet, A. Vasanelli, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, and C. Sirtori, *Phys. Rev.* B 73, 085311 (2006).

Support:

Serbian Ministry of Science, Swiss National Science Foundation, and European Commission (EGI-InSPIRE, PRACE-11P, and HP-SEE)

