

Nonlinear BEC Dynamics Induced by Harmonic Modulation of Atomic s-wave Scattering Length Ivana Vidanović¹, Antun Balaž¹, Hamid Al-Jibbouri², and Axel Pelster³ Scientific Computing Laboratory, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade, Serbia ² Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany ³ Fachbereich Physik, Universität Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany

Motivation: In the recent experiment [1], a harmonic modulation of the atomic swave scattering length induced a nonlinear dynamics of a ⁷Li BEC, and the resulting resonance curve for the excited quadrupole mode was measured. By combining a perturbative calculation with a numerical approach for solving the underlying Gross-Pitaevskii equation, we study in detail the frequency shift of collective BEC modes which arises due to nonlinear interaction effects [2].

BEC dynamics

Frequency shift of collective modes - spherically sym. BEC

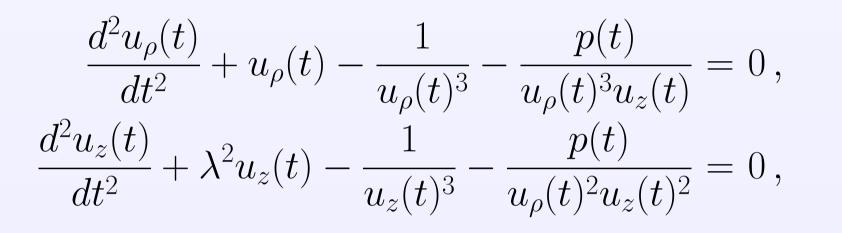
* Frequency shift of the breathing mode is obtained by imposing the cancellation of secular terms according to the Poincaré-Lindstedt method. Up to third order in q it turns out that the 1st order correction ω_1 vanishes, leading to a shift quadratic in q:

$$\omega = \omega_0 + q^2 \frac{\text{Polynomial}(\Omega)}{(\Omega^2 - \omega_0^2)^2 (\Omega^2 - 4\omega_0^2)} + \dots$$

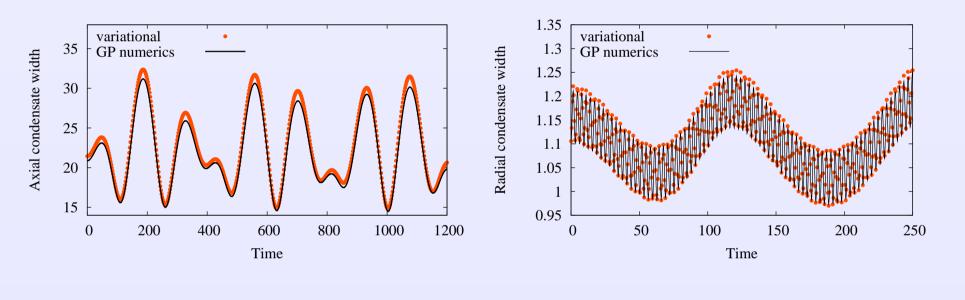
 \star At zero temperature, BEC can be described by the time-dependent GP equation

 $i\hbar \frac{\partial \psi(\vec{r},t)}{\partial t} = \left| -\frac{\hbar^2}{2m} \Delta + V(\vec{r}) + g(t) |\psi(\vec{r},t)\rangle|^2 \right| \psi(\vec{r},t),$

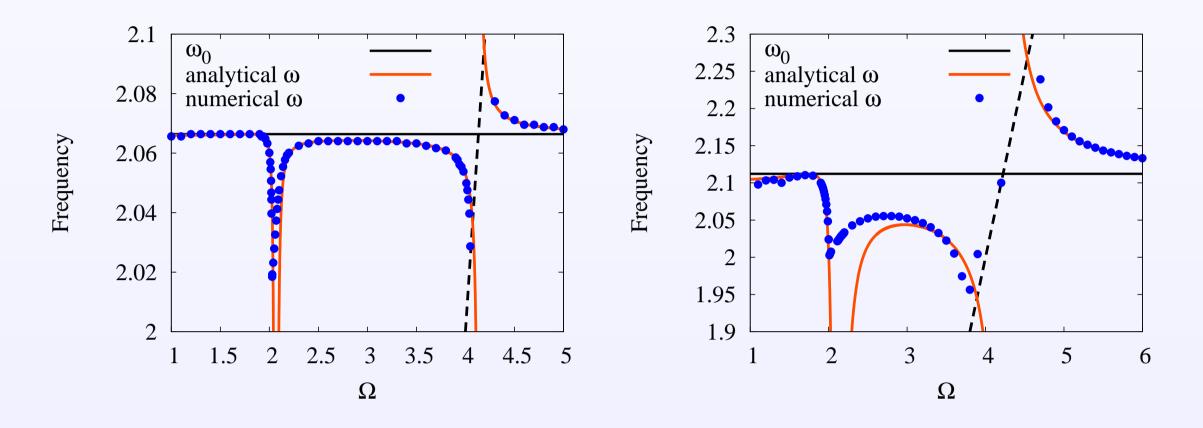
where $V(\vec{r}) = \frac{1}{2}m\omega_{\rho}^{2}(\rho^{2} + \lambda^{2}z^{2})$ is a trap with anisotropy $\lambda, g(t) = \frac{4\pi\hbar^{2}Na(t)}{m}$ is a nonlinear interaction defined by the s-wave scattering length a(t) and number of atoms N. \star GP equation can be studied using a Gaussian variational ansatz [3], yielding



- where $u_{\rho}(t)$ and $u_{z}(t)$ are condensate widths, $p(t) = \sqrt{\frac{2}{\pi} \frac{Na(t)}{l}}$ and $l = \sqrt{\frac{\hbar}{m\omega}}$. \star Using Feshbach resonances, scattering length was harmonically modulated [1], yielding the time-dependent interaction $p(t) = p + q \cos \Omega t$.
- ***** Real-time dynamics for p = 15, q = 10, $\lambda = 0.021$ and $\Omega = 0.05$:



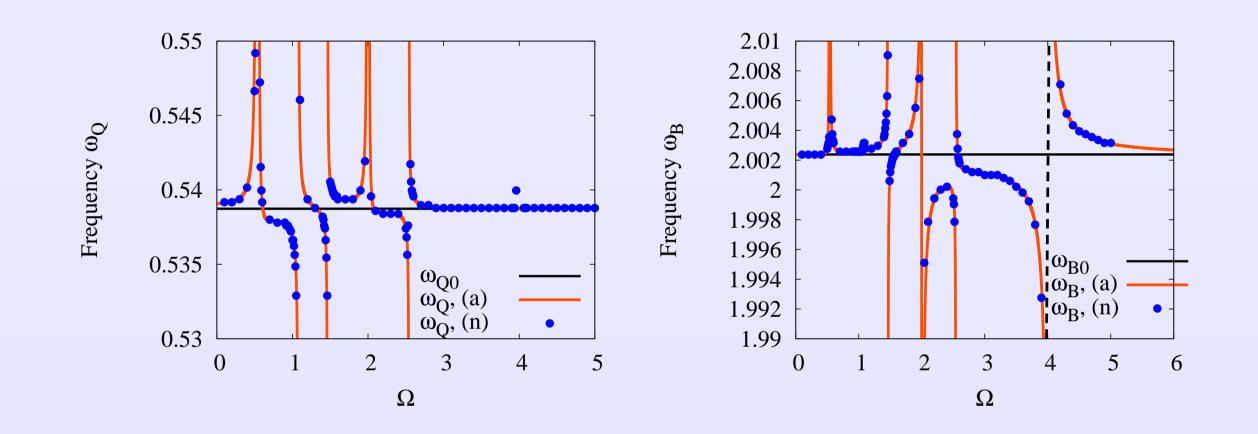
* Good agreement of numerical and analytical results is obtained for the frequency shift far from resonances. On the left plot p = 0.4, q = 0.1, on the right plot p = 1, q = 0.8:



 \star Frequency shifts of up to 10% are found for large modulation amplitudes.

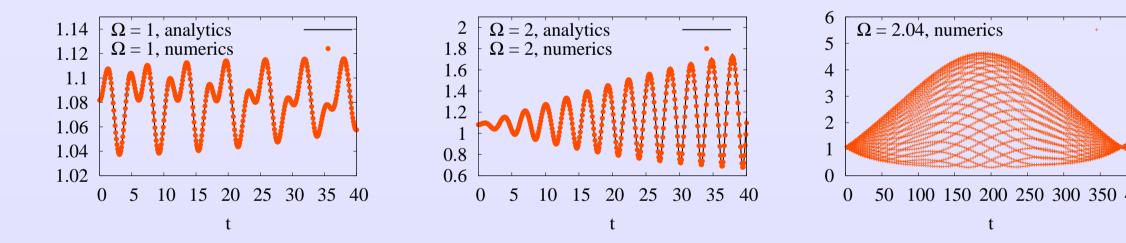
Frequency shift of collective modes - axially sym. BEC

* Harmonic modulation of interaction leads to the simultaneous excitation of quadrupole (ω_Q) and breathing (ω_B) mode, and their coupling. ★ Good agreement of numerical and analytical results for the frequency shift of quadrupole and breathing mode is obtained far from resonances, p = 1, q = 0.2 and $\lambda = 0.3$:

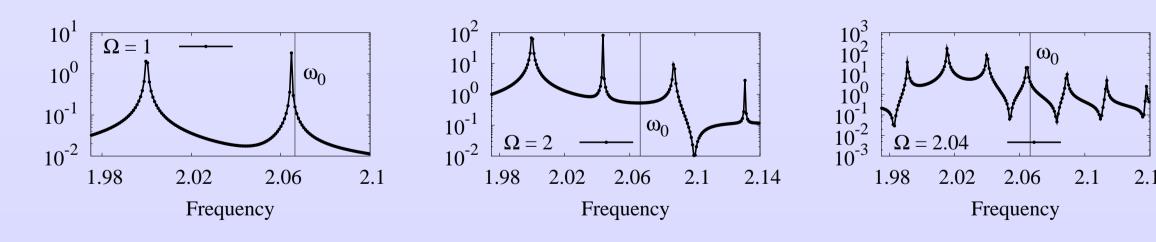


Excitation spectra

★ Condensate dynamics depends strongly on the value of Ω , (p=0.4, q = 0.2, $\lambda = 1$):



* From the linear stability analysis we find equilibrium size u_0 via $u_0 - \frac{p}{u_0^4} - \frac{1}{u_0^3} = 0$ and collective oscillation mode $\omega_0 = \sqrt{1 + \frac{3}{u_0^4} + \frac{4p}{u_0^5}}$. For p = 0.4: $u_0 = 1.08183$, $\omega_0 = 2.06638$. \star In the corresponding Fourier spectra we observe nonlinear features - higher harmonics generation, nonlinear mode coupling and frequency shifts:

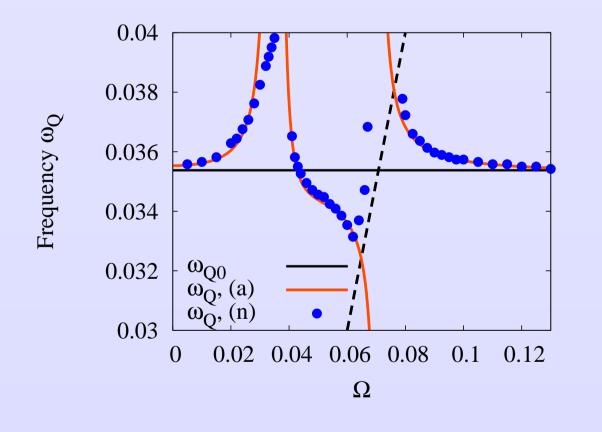


Poincaré-Lindstedt analysis

* Linearization of the variational equation for vanishing driving q = 0 yields zeroth order collective mode $\omega = \omega_0$ of oscillations around the time-independent solution u_0 . To calculate the collective mode to higher orders, we rescale time as $s = \omega t$ [4]: $\omega^2 \ddot{u}(s) + u(s) - \frac{1}{u(s)^3} - \frac{p}{u(s)^4} - \frac{q}{u(s)^4} \cos \frac{\Omega s}{\omega} = 0.$

* Analytical solution in the 2^{nd} order in q exhibits poles; for the quadrupole mode poles are at ω_{Q0} , $2\omega_{Q0}$, $\omega_{B0} - \omega_{Q0}$, $\omega_{Q0} + \omega_{B0}$ and ω_{B0} , while for the breathing mode positions of poles are at ω_{Q0} , ω_{B0} , $2\omega_{B0}$, $\omega_{B0} - \omega_{Q0}$ and $\omega_{Q0} + \omega_{B0}$.

 \star For the experimental setup [1]: $p = 15, q = 10, \lambda = 0.021,$ $\omega_{Q0} = 0.035375, \quad \omega_{B0} = 2.00002,$ $\omega_{Q0} \ll \omega_{B0}, \, \Omega \in (0, 3\omega_{Q0});$ strong excitation of quadrupole mode and significant excitation of breathing mode; frequency shift of about 10%.



Summary and outlook

- * Using numerical Fourier analysis and analytical Poincaré-Lindstedt method, we calculated the frequency shift of collective modes for a spherically and axially symmetric BEC excited by harmonic modulation of the scattering length.
- * To extend applicability of our analytical approach, perturbative expansion to higher order

 \star Far from resonances, we assume perturbative expansions in q:

 $u(s) = u_0 + q \, u_1(s) + q^2 \, u_2(s) + q^3 \, u_3(s) + \dots,$ $\omega = \omega_0 + q \,\omega_1 + q^2 \,\omega_2 + q^3 \,\omega_3 + \dots$

* This leads to a hierarchical system of equations in orders of q [4]. To the 3rd order: $\omega_0^2 \ddot{u}_1(s) + \omega_0^2 u_1(s) = rac{1}{u_0^4} \cos rac{\Omega s}{\omega},$ $\omega_0^2 \ddot{u}_2(s) + \omega_0^2 u_2(s) = -2\omega_0 \omega_1 \ddot{u}_1(s) - rac{4}{u_0^5} u_1(s) \cos rac{\Omega s}{\omega} + lpha u_1(s)^2 \,,$ $\omega_0^2 \ddot{u}_3(s) + \omega_0^2 u_3(s) = -2\omega_0 \omega_2 \ddot{u}_1(s) - 2\beta u_1(s)^3 + 2\alpha u_1(s)u_2(s) - \omega_1^2 \ddot{u}_1(s) + \frac{10}{u_0^6} u_1(s)^2 \cos\frac{\Omega s}{\omega} - \frac{4}{u_0^5} u_2(s) \cos\frac{\Omega s}{\omega} - 2\omega_0 \omega_1 \ddot{u}_2(s),$

where $\alpha = 10p/u_0^6 + 6/u_0^5$ and $\beta = 10p/u_0^7 + 5/u_0^6$.

has to be performed, or some kind of resummation of perturbative series could be applied. ★ Clear experimental verification of such nonlinearity-induced frequency shifts may be possible using trap geometry with higher λ then the one used in Ref. [1].

• References

[1] S. E. Pollack, D. Dries, et. al., PRA **81**, 053627 (2010) [2] F. Dalfovo, C. Minniti, L. P. Pitaevskii PRA 56, 4855 (1997) [3] V. M. Pérez-García, H. Michinel, et. al., PRL **77**, 5320 (1996) [4] A. Pelster, H. Kleinert, M. Schanz, PRE **67**, 016604 (2003)

• Support: Serbian Ministry of Science (ON171017, NAD-BEC), DAAD - German Academic and Exchange Service (NAD-BEC), and European Commission (EGI-InSPIRE, PRACE-1IP and HP-SEE).

