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Overview

@ Introduction

o Experiments with ultracold atoms
e BEC with modulated interaction - recent experiment

@ Theoretical background
o Mean-field description
o Gaussian approximation
@ Spherically symmetric BEC
o Condensate dynamics
o Excitation spectra
o Perturbative approach
o GP numerics
@ Cylindrically symmetric BEC
o Condensate dynamics
o Excitation spectra
o Experimental setup

@ Conclusions and outlook

Vidanovié et al.: Nonlinear BEC Dynamics by Harmonic Modulation of Scattering Length



Introduction
SCIENTIFIC Experiments with ultracold atoms
COMPUTING BEC with modulated interaction

LABORATORY

Experiments with ultracold atoms

Intensive progress in the field of ultracold atoms has been
recognized by Nobel prize for physics in 2001

Cold alkali atoms:

Rb, Na, Li, K...

T ~1nK, p~10"em™3
Cold bosons, cold fermions
Harmonic trap, optical lattice

Short-range interactions,
long-range dipolar interactions

Tunable quantum systems concerning dimensionality, type
and strength of interactions
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BEC with modulated interaction

o Motivation - recent experiment by Randy Hulet’s group at
Rice University and by Vanderlai Bagnato’s group at Sao
Paulo University: PRA 81, 053627 (2010)

300 um

e BEC of "Li is confined in a
cylindrical trap

o Time-dependent modulation of
atomic interactions
via a Feshbach resonance

o Excitation of the lowest-
lying quadrupole mode

o Interesting setup for studying nonlinear BEC dynamics
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Mean-field description

o Gross-Pitaevskii equation assuming 7' = 0

(no thermal excitations)

oY(T,t) h2
h—ar— = |~ A+ V() +gl(7, )| (7, t)

e (7, t) is a condensate wave-function
o V(r) = 2mw 2(p? 4+ A\222) is a harmonic trap potential,

l = \/h/muw, is a characteristic harmonic oscillator length
e effective interaction between atoms is given by gd(7)
0 g= %, a is s-wave scattering length, N is number of

atoms in the condensate

Vidanovié et al.: Nonlinear BEC Dynamics by Harmonic Modulation of Scattering Length



s CIENTIFIC Theoretical background Mean-.ﬁeld descri.ptiO!I
E OMPUTING Gaussian approximation

®
LABORATORY

Feshbach resonance

o PRL 102, 090402: "Li PE M,ugi%

A PR pe

o(B) = anc (”m) S ——
ag = —24.5a0, Bos = 736.8G, w

A = 192G o 550

600 650 700
Magnetic Field (G)

o Scattering length can be modulated using external
magnetic field via a Feshbach resonance

B(t) = Bay + 0B cosQt, a(t) =~ aav + dacos Qt

agagAdB
(Bav - Boo)2
By = 565G, 6B = 14 G, aay ~ 3ao, da ~ 2ag

aay = a(Bav), 0a=—
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Gaussian approximation (1)

e To simplify calculations and to obtain analytical insight,
we approximate density of atoms by a Gaussian
o For an axially symmetric trap

2 2

+ zpzAu(t)} exp {—%@ 2P AL ()

1/)(/% 2y t) = C(t) exp l:_% u(pt)2

e By extremizing corresponding action, we obtain two
ordinary differential equations, PRL 77, 5320 (1996)
o In the dimensionless form

d*u(t) 1 p(t)
az O LnE T wire
o) 2o 1 pt)
gz PNV e T umreae
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Gaussian approximation (2)

o Using this type of approximation and relying on the linear
stability analysis, frequencies of low-lying collective modes
have been analytically calculated

o Equilibrium widths

1 ) 1
w =+ —2—, Nuo= 3+ 2
ud  udvo vd ' udvd

o Linear stability analysis
u(t) = uo + du(t), v(t) = vo + dv(t)

73 UyVo UpVo
- 3 2p 2p
dv+dv [N+ = + =5 Su—rs =0
ot < +v3+u3v3)+ Yo
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Gaussian approximation (3)

@ Previous system of equations can be decoupled by a linear
transformation

o As a result, we have frequencies of two low-lying modes -
quadrupole mode wgp and breathing mode wpg

2 2
_ 2__p — )2 p _p _
wmnan = V2| (14X = gk ) i\/(1 o+ k) +8 (ak) }
t 1
d 1 ~ & i
Quadrupole - L LR Breathing
mode wqo y - mode wpgg
& t

o p=15, A=0.021, wgo = 27 x 8.2Hz, wpp = 27 X 462 Hz
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Gaussian approximation (4)

@ Due to the nonlinear form of the underlying GP equation,
we have nonlinearity induced shifts in the frequencies of
low-lying modes (beyond linear response)

o Our aim is to describe collective modes induced by
harmonic modulation of interaction

p(t) ~ p+ qcos

q - modulation amplitude, €2 - modulation frequency

For 2 close to some BEC eigenmode we expect resonances
- large amplitude oscillations and role of nonlinear terms
becomes crucial
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Spherical BEC

Condensate

namics

t pect

Spherical BEC - Condensate dynamics (1)

e p=04,q=0.1,
U(O) = Uuo,
w(0) =0

o Linear stability
analysis:
wo = 2.06638

o Dynamics
depends on

u(w

5 10 15 20 25 30 35 40
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Condensate dynamics (2)

100 T N T T T T

Amplitude

o Clearly, collective modes are shifted
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Excitation spectra (1)

e We look at the Fourier transform of w(t),
p=04,¢g=0.1and Q=2

1000 T T T T T T T
100 ¢ q
10 | q

Frequency
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Excitation spectra (2)

@ We have two basic modes 2 and wy and
many higher-order harmonics

100 100

Q=2 —— Q=2 ——
10 Q oy
10
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Excitation spectra (3)

o Frequency of the breathing mode is significantly shifted in
the resonant region

10 ool 100 a2
1 10 ¢

0.1 ¢ 1

001 ¢ 0.1 ¢ g
©o
0.001 001
198 202 206 2.1 2.14 1.98 202 206 2.1 2.14
Frequency Frequency
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Spherical BEC

Perturbative approach - method

o Linearization of the variational equation yields for

vanishing driving ¢ = 0 zeroth order collective mode w = wy
of oscillations around the time-independent solution ug:

3 4 1
wo = 1+7+£ uo—ﬂ—*g=0
Uy  Up Uy  Up

@ To calculate the collective mode to higher orders, we
rescale time as s = wt:

2 .. 1 p q Qs _
w” i(s) + u(s) W ()i uls) cos —— =0
o We assume the following perturbative expansions in ¢:

u(s) = uo+qu1(s)+q2u2(s)+q3u3(s)+...
w = wo+qw1+q2wz+q3w3+...

Vidanovié et al.: Nonlinear BEC Dynamics by Harmonic Modulation of Scattering Length
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Perturbative approach - method

@ This leads to a hierarchical system of equations:

.. 1 . Qs
wo i (s) Fwgui(s) = s sin —
.. .. 4 . Qs
wg tia(s) + wg us(s) = —2wowitii(s)— " u1(s) sin o + au1(5)2

0
—2wo wa i1 (s) — 2Bu1(s)® + 200wy (s)uz(s) — wi i1 (s)

wq iz (s) + wp ua(s)

1 Q 4 Q
—I—H—(é UL (s)2 sin US — u—g uz2(s) sin US — 2wo w1 t2(s)

where a = 10p/uf + 6/ul and B = 10p/uf + 5/uf.

e We determine w; and we by imposing cancellation of
secular terms - Poincaré-Lindstedt method

Vidanovié et al.: Nonlinear BEC Dynamics by Harmonic Modulation of Scattering Length
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Perturbative approach - method

@ Secular term - explanation

i(t) + w?z(t) + C cos(wt) = 0
x(t) = Acos(wt) + Bsin(wt) — %t sin(wt)

linearint
@ In order to have properly behaved perturbative expansion,
we impose cancellation of secular terms by appropriately
adjusting wi and w9
o Another way of reasoning

A
u(t) = Acoswt+Ajtsinwt ~ Acoswt cos AwH—A—l sin Awt sin wt
w

u(t) = Acos[(w — Aw)t], Aw 1

Vidanovié et al.: Nonlinear BEC Dynamics by Harmonic Modulation of Scattering Length
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Perturbative approach - results

o Frequency of the breathing mode vs. driving frequency €2
@ Result in second order of perturbation theory
Polynomial(€2)
_ 2
I P (@ - aud)

2.1 .
a —_— Wy —_—
analytical @ analytical o
208 numerical @ ° numerical & .
’ 215
Z 206 z
5 g
% 3 2.1 1
[} 2.04 !E
205 4
202
2 2
1 15 2 25 3 35 4 4.5 5 1 1.5 2 25 3 35 4 45 5
Q Q
p=04, ¢g=0.1 p=1 ¢=0.2
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GP analysis (1)

o Comparison of the solution of time-dependent GP equation

with solution obtained using Gaussian approximation,
p=04,¢q=0.2

35
1.45 r variational, Q=1 . variational, Q=2
GP numerics, Q=1 GP numerics, Q=2
14
= a 2 =
3 3
= z
° 1.35 o
g g
5 5
k] 13 E
s g
o o
125
12

Time Time

e Good quantitative agreement even for long times
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GP analysis (2)

le+06 T T T T T T T

e Comparison becomes
even more evident
by looking at the
Fourier spectrum of
the solution of GP 100 ¢

100000

10000 ¢

1000

equation, P = 04, 10 F GP numerics 1 ——
GP numerics 2 —
g=020=2 LoPmmeris  —— |
196 198 2 202 204 206 208 2.1
Frequency
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Cylindrical BEC - Condensate dynamics

op=1,4¢=02, 2=0.3
o Linear stability analysis: quadrupole mode wgo = 0.538735,
monopole mode wpg = 2.00238
3 255 -
Q =0.4, analytics Q = 1, analytics
Q= 0.4, numerics . Q = 1, numerics .
28 ¢ 25
- o7 - 245
= :
24 24
221
235
: 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
115 - ! 114 - t
114 | ©=04, analytics Q = I, analytics
Q = 0.4, numerics . 112 Q = |, numerics
1.13 .
1.12
i M
=1 1.1 =
s 109 B 1.08
108 106
1.07
1.06 1.04
1.05
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Excitation spectra (1)

@ We have three basic modes: wq, wg, €} and many
higher-order harmonics

1000 — 100
Axial width, @ =04 E— Axial width, @ =04 —
Radial width, 2 =04 —
100 |
10 Q [C1) g|
10 |
1
1
0.1 0.1
0.01
0.01
0.001
0.0001 0.001
-4 2 0 2 4 05 1 1.5 2
Frequency Frequency
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Excitation spectra (2)

e Frequency of quadrupole o Frequency of breathing
mode wq versus driving mode wp versus driving
frequency {2 frequency {2
0.55 201

2.008

2.006
0.545

2.004

;‘ ;‘ 2.002

2 0s E) 2

E E 1.998

1.996
0.535
° o 1994 ]
analytics —_— 1.992 | analytics
numerics b4 numerics .
0.53 1.99
0 1 2 3 4 5 0 1 2 3 4 5
Q Q

e Poles: wqo, wpo — wqo, e Poles: wqo, wpo — wqo,

2wQo, wQo + wWBo, WRBo WBo, WQo + WBo, 2WBo
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Experimental setup - condensate dynamics

e Comparison of the solution of time-dependent GP equation
with Gaussian approximation
p=15,¢=10, A = 0.021 and Q2 = 0.05

35 [ variational
GP nurgerics

Axial condensate width
Radial condensate width

0 200 400 600 800 1000 1200
Time
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Experimental setup

Cylindrical BEC

Experimental setup - frequency shifts

@ In the experiment:

® Wp >> wQq,
Q€ (0,3wq), large
modulation
amplitude

e Strong excitation of
quadrupole mode

o Excitation of
breathing mode in
the radial direction

e Frequency shifts of
quadrupole mode of
about 10% are
present

Vidanovié et al.: Nonlinear BEC Dynamics by Harmonic Modulation of Scattering Length
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Experimental setup - experimental analysis

@ Resonance curve from PRA 81, 053627 (2010) has been
obtained by a very simplified approach

o Experimental data were fit to the linear combination of two
basic harmonics

v(t) = vo + v sin(Q + @) + vg sin(wgot + @)

o Higher harmonics were
neglected completely

o Frequency shifts were not
included in the analysis

Fractional Amplitude

@ More careful analysis of
experimental data is necessary T T T s

Modulation Frequency (2 / 2x) (Hz)
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Conclusions and outlook

Conclusions

o Motivated by recent experimental results, we have studied
nonlinear BEC dynamics induced by harmonically
modulated interaction

o We have used a combination of an analytic perturbative
approach, numerics based on Gaussian approximation and
numerics based on full time-dependent GP equation

o Relevant excitation spectra have been presented and
prominent nonlinear features have been found: mode
coupling, higher harmonics generation and significant shifts
in the frequencies of collective modes

@ Our results are relevant for future experimental designs

that will include mixtures of cold gases and their
dynamical response to harmonically modulated interactions

Vidanovié et al.: Nonlinear BEC Dynamics by Harmonic Modulation of Scattering Length
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Conclusions and outlook

Outlook

o Parametric stabilization of attractive BEC
o Confinement induced resonance
o We try to excite quadrupole mode only

—o _ (up(t) 200 — 7 - S0V — ¢
u(t) = (uz(t)> , U(0) = Ueq + €tigo, U0)=0

o Nonlinearity leads to the coupling of quadrupole and
breathing mode

o This coupling is particulary strong for certain values of trap
anisotropy A

e Signicant frequency shifts in the frequencies of collective
modes may appear

Vidanovié et al.: Nonlinear BEC Dynamics by Harmonic Modulation of Scattering Length
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