
 27 May 2010

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Why serial is not enough
  Computing architectures
  Parallel paradigms
  Message Passing Interface
  How to compile and run MPI programs

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Using a single computer to complete
a single task
  concurrent computing

  To improve performance
  Optimize program code
  Use mathematical libraries
  Improve the hardware

  Moore’s law - empirical observation made in
1965 that the number of transistors on an
integrated circuit for minimum component
cost doubles every 24 months.

  Bigger, faster and more memory (DDR3,
FBDIMMS)

  More storage!
Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Realistic simulations require really really
  Large numbers of particles
  Large MC samples
  Large statistics
  Combinatorially large spaces to be searched
  Excessively fine multidimensional discretizations
  Huge data inputs to be processed
  …

  We want to solve problems harder, faster,
better, stronger!

  Parallel hardware is available (clusters)
  Parallel software is available (libraries)
  And we want to learn something new…

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Shared memory (SMP)
  Single large system where all CPUs can

access the whole available memory
  Distributed memory

  Each CPU can access only local memory
attached to it (nodes with one single-core
CPU)

  Hybrid systems (majority of clusters)
  Nodes with several single-core CPUs
  Nodes with a single multicore CPU
  Nodes with several multicore CPUs

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  The two (three) architectures
determine two basic paradigms
  Data parallel (shared memory)

  Single memory view, all processes (usually
threads) could directly access the whole
memory

  Message Passing (distributed memory
  All processes could directly access only

their local memory

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  It is easy to adopt a Message Passing scheme in a
Shared Memory computers (Unix processes have
their private memory)

  It is less easy to follow a Data Parallel scheme in a
Distributed Memory computer (emulation of shared
memory)

  It is relatively easy to design a program using the
message passing scheme and implementing the
code in a Data Parallel programming environments
(using OpenMP or HPF)

  It is not easy to design a program using the Data
Parallel scheme and implementing the code in a
Message Passing environment.

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

Programming environments
Message Passing Data Parallel

Standard compilers Ad hoc compilers

Communication libraries Source code directive

Ad hoc commands to run
program

Standard Unix shell to run
program

Standard: MPI Standard: OpenMP

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

Architecture
Distributed memory Shared memory

Programming paradigm
Message passing Data parallel

Programing model
Domain decomposition Functional decomposition

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Domain decomposition
  Data divided into equal chunks and

distributed to available CPUs
  Each CPU process its own local data
  Exchange of data if needed

  Functional decomposition
  Problem decomposed into many sub-

tasks
  Each CPU performs one of sub-tasks
  Similar to server/client paradigm

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  SISD (Single instruction, single data)
  SIMD (Single instruction, multiple data)

  the same instructions are carried out
simultaneously on multiple data items

  SSE is a good example

  MISD (Multiple instruction, single data)
  MIMD (Multiple instruction, multiple data)

  different instructions on different data
  SPSD (Single program, single data)
  SPMD (Single program, multiple data)

  not synchronized at individual operation level
  equivalent to MIMD since each MIMD program

can be made SPMD

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  SPSD (Single program, single data)
  SPMD (Single program, multiple data)

  not synchronized at individual operation level
  equivalent to MIMD since each MIMD program

can be made SPMD

  MPSD (Multiple program, single data)
  MPMD (Multiple program, multiple data)

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

Model Paradigm Flint’s taxonomy

Domain
decomposition

Message Passing
SPMD

Data Parallel - HPF

Functional
decomposition

Data Parallel -
OpenMP

MPSD

MPMD
Message Passing

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Balancing of the load
  Applies to computation, I/O operations,

network communication
  Relatively easy for domain

decomposition, not so easy for functional
decomposition

  Minimizing communication
  Join individual communications
  Eliminate synchronization – the slowest

process dominates
  Overlap of computation and

communication
  This is essential for true parallelism!

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Parallel programs consist of separate
processes, each with its own address space
  Programmer manages memory by placing data in

a particular process

  Data sent explicitly between processes
  Programmer manages memory movement

  Collective operations
  On arbitrary set of processes
  Data distribution

  Also managed by the programmer

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Nothing is shared between processes

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Message Passing Interface
  A message-passing library specification

  extended message-passing model
  not a language or compiler specification
  not a specific implementation or product

  For parallel computers, clusters, and
heterogeneous networks

  Full-featured
  Designed to provide access to advanced

parallel hardware for end users, library
writers, and tool developers

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  MPI is a standard
  A list of rules and specifications
  Left up to individual implementations as to how it

is implemented.
  There are several implementations available over

serveral different networks

  Goals of MPI
  To provide source-code portabilty

  Virtually every supercomputer on Earth can use MPI

  To allow efficient implementation of parallel
computing

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  The Standard itself:
  at http://www.mpi-forum.org
  All MPI official releases, in both

postscript and HTML
  Other information on Web:

  at http://www.mcs.anl.gov/mpi
  pointers to lots of stuff, including talks

and tutorials, a FAQ, other MPI pages

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Because MPI is a standard, there are
several implementations

  MPICH - http://www-unix.mcs.anl.gov/mpi/
mpich1/
  Freely available, portable implementation
  Available on everything

  OpenMPI - http://www.open-mpi.org/
  Includes the once popular LAM-MPI

  Vendor specific implementations
  CRAY, SGI, IBM

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  MPI-1
  Specifies traditional sender/reciever message

passing scheme
  Two-sided communication model
  Communication involves both the sender and

reciever
  Limited and not completely scalable without

Herculean effort

  MPI-2
  Implements many concepts that became popular

since MPI-1
  Remote memory access, parallel I/O and

dynamic processing
  One-sided communication model
  All communication parameters are handled by

one process
Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Open source implementation of MPI-2
  Single library supports all networks

  TCP, Myrinet, InfiniBand

  Network and process fault tolerance
  VampirTrace

  Performance analysis
  Visualisation

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  You need a portable parallel program
  You are writing a parallel library
  You have irregular or dynamic data

relationships that do not fit a data
parallel model

  You care about performance

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  You can use parallel Fortran 90 or
any other data parallelism mechanism

  You don’t need parallelism at all
  You can use libraries (which may be

written in MPI)
  You need simple threading in a

slightly concurrent environment

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  MPI is a library
  All operations are performed with

function (subroutine) calls
  Basic definitions are in

  mpi.h for C/C++
  mpif.h for Fortran 77 and 90
  MPI module for Fortran 90 (optional)

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

Functions may be roughly divided into 4 classes:
  Calls used to initialize, manage, and terminate

communications
  Calls used to communicate between pairs of

processes (Point-to-point communication)
  Calls used to communicate among groups of

processes (Collective communication)
  Calls to create data types

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

#include <mpi.h>

#include <stdio.h>

int main(int argc, char **argv)

{

 MPI_Init(&argc, &argv);

 printf("Hello, MPI world!\n");

 MPI_Finalize();

 return 0;

}!

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  No standard, left to implementations
  Generally:

  You should specify the appropriate include
directory:
  -I/mpidir/include

  You should specify the mpi library
  -L/mpidir/lib –lmpi

  With GCC
  gcc -I/usr/local/mpich/include -L/usr/local/mpich/lib

–lmpich mpi-hello.c –o mpi-hello
  Usually MPI compiler wrappers do this job

for you. (i.e. mpicc, mpif77, mpif90, mpicxx)
  mpicc –o mpi-hello mpi-hello.c

  Check on your machine...
Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

#include <mpi.h>
#include <stdio.h>

int main(int argc, char **argv)
{
 int myid, np;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &myid);
 MPI_Comm_size(MPI_COMM_WORLD, &np);
 printf(“Process %d out of %d\n", myid, np);
 MPI_Finalize();
 return 0;
}!

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  The MPI-1 Standard does not specify how to run an
MPI program, just as the Fortran standard does not
specify how to run a Fortran program.

  Many implementations provide mpirun to run an MPI
program
  mpirun –np 4 mpi-hello

  In general, starting an MPI program depends on the
implementation of MPI you are using, and might
require various scripts, program arguments, and/or
environment variables.

  mpiexec is part of MPI-2, as a recommendation, but
not as a requirement

  Many parallel systems use a batch environment to
share resources among users

  The specific commands to run a program on a
parallel system are defined by the environment
installed on the parallel computer

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Learn MPI function types and syntax
  Learn how to compile and run MPI

programs on a single node
  Learn how to run MPI programs on a

cluster, in batch mode
  If this is not enough, use the Grid
  Serbia is part of European Grid and

HPC communities and projects:
  EGI, PRACE, HP-SEE

  Blue Danube

Lecture for students at the Faculty of Chemistry, University of Belgrade

