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  Why serial is not enough 
  Computing architectures 
  Parallel paradigms 
  Message Passing Interface 
  How to compile and run MPI programs 
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  Using a single computer to complete 
a single task 
  concurrent computing 

  To improve performance 
  Optimize program code 
  Use mathematical libraries 
  Improve the hardware 

  Moore’s law - empirical observation made in 
1965 that the number of transistors on an 
integrated circuit for minimum component 
cost doubles every 24 months.  

  Bigger, faster and more memory (DDR3, 
FBDIMMS) 

  More storage! 
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  Realistic simulations require really really 
  Large numbers of particles 
  Large MC samples 
  Large statistics 
  Combinatorially large spaces to be searched 
  Excessively fine multidimensional discretizations 
  Huge data inputs to be processed 
  … 

  We want to solve problems harder, faster, 
better, stronger! 

  Parallel hardware is available (clusters) 
  Parallel software is available (libraries) 
  And we want to learn something new… 
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  Shared memory (SMP) 
  Single large system where all CPUs can 

access the whole available memory 
  Distributed memory 

  Each CPU can access only local memory 
attached to it (nodes with one single-core 
CPU) 

  Hybrid systems (majority of clusters) 
  Nodes with several single-core CPUs 
  Nodes with a single multicore CPU 
  Nodes with several multicore CPUs 
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  The two (three) architectures 
determine two basic paradigms 
  Data parallel (shared memory) 

  Single memory view, all processes (usually 
threads) could directly access the whole 
memory  

  Message Passing (distributed memory 
  All processes could directly access only 

their local memory 

Lecture for students at the Faculty of Chemistry, University of Belgrade 



    27 May 2010 

  It is easy to adopt a Message Passing scheme in a 
Shared Memory computers (Unix processes have 
their private memory) 

  It is less easy to follow a Data Parallel scheme in a 
Distributed Memory computer (emulation of shared 
memory) 

  It is relatively easy to design a program using the 
message passing scheme and implementing the 
code in a Data Parallel programming environments 
(using OpenMP or HPF) 

  It is not easy to design a program using the Data 
Parallel scheme and implementing the code in a 
Message Passing environment. 
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Programming environments 
Message Passing Data Parallel 

Standard compilers Ad hoc compilers 

Communication libraries Source code directive 

Ad hoc commands to run 
program 

Standard Unix shell to run 
program 

Standard: MPI Standard: OpenMP 
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Architecture 
Distributed memory Shared memory 

Programming paradigm 
Message passing Data parallel 

Programing model 
Domain decomposition Functional decomposition 
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  Domain decomposition 
  Data divided into equal chunks and 

distributed to available CPUs 
  Each CPU process its own local data 
  Exchange of data if needed 

  Functional decomposition 
  Problem decomposed into many sub-

tasks 
  Each CPU performs one of sub-tasks 
  Similar to server/client paradigm  
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  SISD (Single instruction, single data) 
  SIMD (Single instruction, multiple data) 

  the same instructions are carried out 
simultaneously on multiple data items 

  SSE is a good example  

  MISD (Multiple instruction, single data) 
  MIMD (Multiple instruction, multiple data) 

  different instructions on different data 
  SPSD (Single program, single data) 
  SPMD (Single program, multiple data)  

  not synchronized at individual operation level 
  equivalent to MIMD since each MIMD program 

can be made SPMD  
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  SPSD (Single program, single data) 
  SPMD (Single program, multiple data)  

  not synchronized at individual operation level 
  equivalent to MIMD since each MIMD program 

can be made SPMD  

  MPSD (Multiple program, single data) 
  MPMD (Multiple program, multiple data) 
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Model Paradigm Flint’s taxonomy 

Domain 
decomposition 

Message Passing 
SPMD 

Data Parallel - HPF 

Functional 
decomposition 

Data Parallel - 
OpenMP 

MPSD 

MPMD 
Message Passing 
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  Balancing of the load 
  Applies to computation, I/O operations, 

network communication 
  Relatively easy for domain 

decomposition, not so easy for functional 
decomposition 

  Minimizing communication 
  Join individual communications 
  Eliminate synchronization – the slowest 

process dominates 
  Overlap of computation and 

communication 
  This is essential for true parallelism! 
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  Parallel programs consist of separate 
processes, each with its own address space 
  Programmer manages memory by placing data in 

a particular process 

  Data sent explicitly between processes 
  Programmer manages memory movement 

  Collective operations 
    On arbitrary set of processes 
  Data distribution 

  Also managed by the programmer 
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  Nothing is shared between processes 
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  Message Passing Interface 
  A message-passing library specification 

  extended message-passing model 
  not a language or compiler specification 
  not a specific implementation or product 

  For parallel computers, clusters, and 
heterogeneous networks 

  Full-featured 
  Designed to provide access to advanced 

parallel hardware for end users, library 
writers, and tool developers 
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  MPI is a standard 
  A list of rules and specifications 
  Left up to individual implementations as to how it 

is implemented. 
  There are several implementations available over 

serveral different networks 

  Goals of MPI 
  To provide source-code portabilty 

  Virtually every supercomputer on Earth can use MPI 

  To allow efficient implementation of parallel 
computing 
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  The Standard itself: 
  at http://www.mpi-forum.org 
  All MPI official releases, in both 

postscript and HTML 
  Other information on Web: 

  at http://www.mcs.anl.gov/mpi 
  pointers to lots of stuff, including talks 

and tutorials, a FAQ, other MPI pages 
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  Because MPI is a standard, there are 
several implementations 

  MPICH -  http://www-unix.mcs.anl.gov/mpi/
mpich1/ 
  Freely available, portable implementation 
  Available on everything 

  OpenMPI -  http://www.open-mpi.org/ 
  Includes the once popular LAM-MPI 

  Vendor specific implementations 
  CRAY, SGI, IBM 
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  MPI-1 
  Specifies traditional sender/reciever message 

passing scheme 
  Two-sided communication model 
  Communication involves both the sender and 

reciever 
  Limited and not completely scalable without 

Herculean effort 

  MPI-2 
  Implements many concepts that became popular 

since MPI-1 
  Remote memory access, parallel I/O and 

dynamic processing 
  One-sided communication model 
  All communication parameters are handled by 

one process 
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  Open source implementation of MPI-2 
  Single library supports all networks 

  TCP, Myrinet, InfiniBand 

  Network and process fault tolerance 
  VampirTrace 

  Performance analysis 
  Visualisation 
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  You need a portable parallel program 
  You are writing a parallel library 
  You have irregular or dynamic data 

relationships that do not fit a data 
parallel model 

  You care about performance 
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  You can use parallel Fortran 90 or 
any other data parallelism mechanism 

  You don’t need parallelism at all 
  You can use libraries (which may be 

written in MPI) 
  You need simple threading in a 

slightly concurrent environment 
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  MPI is a library 
  All operations are performed with 

function (subroutine) calls 
  Basic definitions are in 

  mpi.h for C/C++ 
  mpif.h for Fortran 77 and 90 
  MPI module for Fortran 90 (optional) 
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Functions may be roughly divided into 4 classes: 
  Calls used to initialize, manage, and terminate 

communications 
  Calls used to communicate between pairs of 

processes (Point-to-point communication) 
  Calls used to communicate among groups of 

processes (Collective communication) 
  Calls to create data types 
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#include <mpi.h> 

#include <stdio.h> 

int main(int argc, char **argv ) 

{ 

    MPI_Init(&argc, &argv); 

    printf("Hello, MPI world!\n"); 

    MPI_Finalize(); 

    return 0; 

}!
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  No standard, left to implementations 
  Generally:  

  You should specify the appropriate include 
directory: 
   -I/mpidir/include 

  You should specify the mpi library 
  -L/mpidir/lib –lmpi 

  With GCC 
  gcc -I/usr/local/mpich/include -L/usr/local/mpich/lib 

–lmpich mpi-hello.c –o mpi-hello 
  Usually  MPI compiler wrappers do this job 

for you. (i.e. mpicc, mpif77, mpif90, mpicxx) 
  mpicc –o mpi-hello mpi-hello.c 

  Check on your machine...   
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#include <mpi.h> 
#include <stdio.h> 

int main(int argc, char **argv) 
{ 
    int myid, np; 
    MPI_Init(&argc, &argv); 
    MPI_Comm_rank(MPI_COMM_WORLD, &myid); 
    MPI_Comm_size(MPI_COMM_WORLD, &np); 
    printf(“Process %d out of %d\n", myid, np); 
    MPI_Finalize(); 
    return 0; 
}!
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  The MPI-1 Standard does not specify how to run an 
MPI program, just as the Fortran standard does not 
specify how to run a Fortran program. 

  Many implementations provide mpirun to run an MPI 
program 
  mpirun –np 4 mpi-hello 

  In general, starting an MPI program depends on the 
implementation of MPI you are using, and might 
require various scripts, program arguments, and/or 
environment variables. 

  mpiexec is part of MPI-2, as a recommendation, but 
not as a requirement 

  Many parallel systems use a batch environment to 
share resources among users 

  The specific commands to run a program on a 
parallel system are defined by the environment 
installed on the parallel computer 
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  Learn MPI function types and syntax 
  Learn how to compile and run MPI 

programs on a single node 
  Learn how to run MPI programs on a 

cluster, in batch mode 
  If this is not enough, use the Grid 
  Serbia is part of European Grid and 

HPC communities and projects: 
  EGI, PRACE, HP-SEE 

  Blue Danube  
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