
 27 May 2010

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Why serial is not enough
  Computing architectures
  Parallel paradigms
  Message Passing Interface
  How to compile and run MPI programs

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Using a single computer to complete
a single task
  concurrent computing

  To improve performance
  Optimize program code
  Use mathematical libraries
  Improve the hardware

  Moore’s law - empirical observation made in
1965 that the number of transistors on an
integrated circuit for minimum component
cost doubles every 24 months.

  Bigger, faster and more memory (DDR3,
FBDIMMS)

  More storage!
Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Realistic simulations require really really
  Large numbers of particles
  Large MC samples
  Large statistics
  Combinatorially large spaces to be searched
  Excessively fine multidimensional discretizations
  Huge data inputs to be processed
  …

  We want to solve problems harder, faster,
better, stronger!

  Parallel hardware is available (clusters)
  Parallel software is available (libraries)
  And we want to learn something new…

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Shared memory (SMP)
  Single large system where all CPUs can

access the whole available memory
  Distributed memory

  Each CPU can access only local memory
attached to it (nodes with one single-core
CPU)

  Hybrid systems (majority of clusters)
  Nodes with several single-core CPUs
  Nodes with a single multicore CPU
  Nodes with several multicore CPUs

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  The two (three) architectures
determine two basic paradigms
  Data parallel (shared memory)

  Single memory view, all processes (usually
threads) could directly access the whole
memory

  Message Passing (distributed memory
  All processes could directly access only

their local memory

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  It is easy to adopt a Message Passing scheme in a
Shared Memory computers (Unix processes have
their private memory)

  It is less easy to follow a Data Parallel scheme in a
Distributed Memory computer (emulation of shared
memory)

  It is relatively easy to design a program using the
message passing scheme and implementing the
code in a Data Parallel programming environments
(using OpenMP or HPF)

  It is not easy to design a program using the Data
Parallel scheme and implementing the code in a
Message Passing environment.

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

Programming environments
Message Passing Data Parallel

Standard compilers Ad hoc compilers

Communication libraries Source code directive

Ad hoc commands to run
program

Standard Unix shell to run
program

Standard: MPI Standard: OpenMP

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

Architecture
Distributed memory Shared memory

Programming paradigm
Message passing Data parallel

Programing model
Domain decomposition Functional decomposition

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Domain decomposition
  Data divided into equal chunks and

distributed to available CPUs
  Each CPU process its own local data
  Exchange of data if needed

  Functional decomposition
  Problem decomposed into many sub-

tasks
  Each CPU performs one of sub-tasks
  Similar to server/client paradigm

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  SISD (Single instruction, single data)
  SIMD (Single instruction, multiple data)

  the same instructions are carried out
simultaneously on multiple data items

  SSE is a good example

  MISD (Multiple instruction, single data)
  MIMD (Multiple instruction, multiple data)

  different instructions on different data
  SPSD (Single program, single data)
  SPMD (Single program, multiple data)

  not synchronized at individual operation level
  equivalent to MIMD since each MIMD program

can be made SPMD

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  SPSD (Single program, single data)
  SPMD (Single program, multiple data)

  not synchronized at individual operation level
  equivalent to MIMD since each MIMD program

can be made SPMD

  MPSD (Multiple program, single data)
  MPMD (Multiple program, multiple data)

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

Model Paradigm Flint’s taxonomy

Domain
decomposition

Message Passing
SPMD

Data Parallel - HPF

Functional
decomposition

Data Parallel -
OpenMP

MPSD

MPMD
Message Passing

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Balancing of the load
  Applies to computation, I/O operations,

network communication
  Relatively easy for domain

decomposition, not so easy for functional
decomposition

  Minimizing communication
  Join individual communications
  Eliminate synchronization – the slowest

process dominates
  Overlap of computation and

communication
  This is essential for true parallelism!

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Parallel programs consist of separate
processes, each with its own address space
  Programmer manages memory by placing data in

a particular process

  Data sent explicitly between processes
  Programmer manages memory movement

  Collective operations
  On arbitrary set of processes
  Data distribution

  Also managed by the programmer

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Nothing is shared between processes

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Message Passing Interface
  A message-passing library specification

  extended message-passing model
  not a language or compiler specification
  not a specific implementation or product

  For parallel computers, clusters, and
heterogeneous networks

  Full-featured
  Designed to provide access to advanced

parallel hardware for end users, library
writers, and tool developers

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  MPI is a standard
  A list of rules and specifications
  Left up to individual implementations as to how it

is implemented.
  There are several implementations available over

serveral different networks

  Goals of MPI
  To provide source-code portabilty

  Virtually every supercomputer on Earth can use MPI

  To allow efficient implementation of parallel
computing

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  The Standard itself:
  at http://www.mpi-forum.org
  All MPI official releases, in both

postscript and HTML
  Other information on Web:

  at http://www.mcs.anl.gov/mpi
  pointers to lots of stuff, including talks

and tutorials, a FAQ, other MPI pages

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Because MPI is a standard, there are
several implementations

  MPICH - http://www-unix.mcs.anl.gov/mpi/
mpich1/
  Freely available, portable implementation
  Available on everything

  OpenMPI - http://www.open-mpi.org/
  Includes the once popular LAM-MPI

  Vendor specific implementations
  CRAY, SGI, IBM

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  MPI-1
  Specifies traditional sender/reciever message

passing scheme
  Two-sided communication model
  Communication involves both the sender and

reciever
  Limited and not completely scalable without

Herculean effort

  MPI-2
  Implements many concepts that became popular

since MPI-1
  Remote memory access, parallel I/O and

dynamic processing
  One-sided communication model
  All communication parameters are handled by

one process
Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Open source implementation of MPI-2
  Single library supports all networks

  TCP, Myrinet, InfiniBand

  Network and process fault tolerance
  VampirTrace

  Performance analysis
  Visualisation

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  You need a portable parallel program
  You are writing a parallel library
  You have irregular or dynamic data

relationships that do not fit a data
parallel model

  You care about performance

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  You can use parallel Fortran 90 or
any other data parallelism mechanism

  You don’t need parallelism at all
  You can use libraries (which may be

written in MPI)
  You need simple threading in a

slightly concurrent environment

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  MPI is a library
  All operations are performed with

function (subroutine) calls
  Basic definitions are in

  mpi.h for C/C++
  mpif.h for Fortran 77 and 90
  MPI module for Fortran 90 (optional)

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

Functions may be roughly divided into 4 classes:
  Calls used to initialize, manage, and terminate

communications
  Calls used to communicate between pairs of

processes (Point-to-point communication)
  Calls used to communicate among groups of

processes (Collective communication)
  Calls to create data types

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

#include <mpi.h>

#include <stdio.h>

int main(int argc, char **argv)

{

 MPI_Init(&argc, &argv);

 printf("Hello, MPI world!\n");

 MPI_Finalize();

 return 0;

}!

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  No standard, left to implementations
  Generally:

  You should specify the appropriate include
directory:
  -I/mpidir/include

  You should specify the mpi library
  -L/mpidir/lib –lmpi

  With GCC
  gcc -I/usr/local/mpich/include -L/usr/local/mpich/lib

–lmpich mpi-hello.c –o mpi-hello
  Usually MPI compiler wrappers do this job

for you. (i.e. mpicc, mpif77, mpif90, mpicxx)
  mpicc –o mpi-hello mpi-hello.c

  Check on your machine...
Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

#include <mpi.h>
#include <stdio.h>

int main(int argc, char **argv)
{
 int myid, np;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &myid);
 MPI_Comm_size(MPI_COMM_WORLD, &np);
 printf(“Process %d out of %d\n", myid, np);
 MPI_Finalize();
 return 0;
}!

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  The MPI-1 Standard does not specify how to run an
MPI program, just as the Fortran standard does not
specify how to run a Fortran program.

  Many implementations provide mpirun to run an MPI
program
  mpirun –np 4 mpi-hello

  In general, starting an MPI program depends on the
implementation of MPI you are using, and might
require various scripts, program arguments, and/or
environment variables.

  mpiexec is part of MPI-2, as a recommendation, but
not as a requirement

  Many parallel systems use a batch environment to
share resources among users

  The specific commands to run a program on a
parallel system are defined by the environment
installed on the parallel computer

Lecture for students at the Faculty of Chemistry, University of Belgrade

 27 May 2010

  Learn MPI function types and syntax
  Learn how to compile and run MPI

programs on a single node
  Learn how to run MPI programs on a

cluster, in batch mode
  If this is not enough, use the Grid
  Serbia is part of European Grid and

HPC communities and projects:
  EGI, PRACE, HP-SEE

  Blue Danube

Lecture for students at the Faculty of Chemistry, University of Belgrade

