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Path integral formalism (1)

Amplitudes for transition from an initial state |α〉 to a final
state |β〉 in imaginary time T can be written as

A(α, β;T ) = 〈β|e−TĤ |α〉

Dividing the evolution into N time steps ε = T/N , we get

A(α, β;T ) =
∫
dq1 · · · dqN−1A(α, q1 ; ε) · · ·A(qN−1 , β; ε) ,

Approximate calculation of short-time amplitudes leads to

AN (α, β;T ) =
1

(2πε)MdN/2

∫
dq1 · · · dqN−1 e

−SN

Hagen Kleinert, Path Integrals in Quantum Mechanics,
Statistics, Polymer Physics, and Financial Markets, 5th

edition, World Scientific, Singapore, 2009.
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Path integral formalism (2)

Continual amplitude A(α, β;T ) is obtained in the limit
N →∞ of the discretized amplitude AN (α, β;T ),

A(α, β;T ) = lim
N→∞

AN (α, β;T )

Discretized amplitude AN is expressed as a multiple
integral of the function e−SN , where SN is called
discretized action
For a theory defined by the Lagrangian L = 1

2 q̇
2 + V (q),

(naive) discretized action is given by

SN =
N−1∑
n=0

(
δ2
n

2ε
+ εV (q̄n)

)
,

where δn = qn+1 − qn, q̄n = qn+1+qn

2 .
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Discretized effective actions

Discretized actions can be classified according to the speed
of convergence of discretized path integrals
Improved discretized actions have been earlier constructed,
mainly tailored for calculation of partition functions

generalizations of the Trotter-Suzuki formula
improvements in the short-time propagation
expansion of the propagator by the number of derivatives

Li-Broughton effective potential (1987)

V LB = V +
1
24
ε2 (∇V )2

in the left prescription gives 1/N4 convergence for
calculation of partition functions
This cannot be extended to higher orders, nor such an
approach was developed for general transition amplitudes
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Ideal discretization

Ideal discretized action S∗ is defined as the action giving
exact continual amplitudes AN = A for any discretization
From the completeness relation

A(α, β;T ) =
∫
dq1 · · · dqN−1 A(α, q1 ; ε) · · ·A(qN−1 , β; ε) ,

it follows that the ideal short-time discretized action S∗n is
given by

A(qn, qn+1; ε) =
1

(2πε)Md/2
e−S∗n

where M is the number of particles, d dimensionality, and

S∗n =
δ2
n

2ε
+ εWn(q̄n, δn; ε) ,

and W is the (ideal) effective potential
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Improving effective actions (1)

We start from Schrödinger’s equation for the short-time
amplitude A(q, q′; ε)[

∂

∂ε
− 1

2

M∑
i=1

4i + V (q)

]
A(q, q′; ε) = 0[

∂

∂ε
− 1

2

M∑
i=1

4′i + V (q′)

]
A(q, q′; ε) = 0

Here 4i and 4′i are d-dimensional Laplacians over initial
and final coordinates of the particle i, while q and q′ are
d×M dimensional vectors representing positions of all
particles at the initial and final time.
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Improving effective actions (2)

If we express short-time amplitude A(q, q′; ε) by the ideal
discretized effective potential W

A(q, q′; ε) =
1

(2πε)Md/2
exp

[
−δ

2

2ε
− εW

]
we obtain equation for the effective potential in terms of
x = δ/2, x̄ = (q + q′)/2, V± = V (x̄± x)

W + x · ∂ W + ε
∂W

∂ε
− 1

8
ε∂̄2W − 1

8
ε∂2W +

1
8
ε2(∂̄W )2

+
1
8
ε2(∂W )2 =

V+ + V−
2
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Recursive relations (1)

The effective potential is given as a power series

W (x, x̄; ε) =
∞∑

m=0

m∑
k=0

Wm,k(x, x̄) εm−k ,

where systematics in ε-expansion is ensured by ε ∝ x2, and

Wm,k(x, x̄) = xi1xi2 · · ·xi2k
ci1,...,i2k
m,k (x̄)

Coefficients Wm,k are obtained from recursive relations

8 (m+ k + 1)Wm,k = ∂̄2Wm−1,k + ∂2Wm,k+1

−
m−2∑
l=0

∑
r

(∂̄Wl,r) · (∂̄Wm−l−2,k−r)

−
m−2∑
l=1

∑
r

(∂Wl,r) · (∂Wm−l−1,k−r+1)
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Recursive relations (2)

Diagonal coefficients are easily obtained from recursive
relations

Wm,m =
1

(2m+ 1)!
(x · ∂̄)2m V

Off-diagonal coefficients are obtained by applying recursive
relations in the following order

0

1

2

3

...

m

0 1 2 3 . . . k
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Diagonalization of the evolution operator
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potential, with m = ω = 1, g = 48, ∆ = 0.05, L = 4.
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Energy eigenvalues and eigenstates
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The double-well potential, its energy eigenvalues and
eigenfunctions ψk(x) for k = 0, 1, 2, 3, 6, 7, with the parameters
m = −10, ω = 1, g = 12, L = 10, ∆ = 1.22 · 10−3, t = 0.1.
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Effective actions: many-body p=4 result

S(p=4)
N

=
∑{

ε

(
1
2
δiδi
ε2

+ V

)
+

ε2

12
∂2

k,kV +
εδiδj
24

∂2
i,jV

− ε3

24
∂iV ∂iV +

ε3

240
∂4

i,i,j,jV +
ε2δiδj
480

∂4
i,j,k,kV +

εδiδjδkδl
1920

∂4
i,j,k,lV

+
ε4

6720
∂6

i,i,j,j,k,kV −
ε4

120
∂iV ∂

3
i,k,kV −

ε4

360
∂2

i,jV ∂
2
i,jV

− ε3δiδj
480

∂kV ∂
3
k,i,jV +

ε3δiδj
13440

∂6
i,j,k,k,l,lV −

ε3δiδj
1440

∂2
i,kV ∂

2
k,jV

+
ε2δiδjδkδl

53760
∂6

i,j,k,l,m,mV +
εδiδjδkδlδmδn

322560
∂6

i,j,k,l,m,nV

}
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Effective actions: time-dependent formalism

W (x, x̄; ε, τ) =
∞∑

m=0

m∑
k=0

{
Wm,k(x, x̄; τ) εm−k +Wm+1/2,k(x, x̄; τ) εm−k

}
,

R1 : 8(m+ k + 1)Wm,k = 8
Π(m, k) (x̄ · ∂)2k

(m−k)

V

(2k)! (m− k)! 2m−k
+ ∂̄2Wm,k+1 + ∂2Wm−1,k

−
∑
l,r

{
∂Wl,r · ∂Wm−l−2,k−r + ∂Wl+1/2,r · ∂Wm−l−5/2,k−r−1

+∂̄Wl,r · ∂̄Wm−l−1,k−r+1 + ∂̄Wl+1/2,r · ∂̄Wm−l−3/2,k−r

}
,

R2 : 8(m+ k + 2)Wm+1/2,k = 8
(1−Π(m, k)) (x̄ · ∂)2k+1

(m−k)

V

(2k + 1)! (m− k)! 2m−k
+ ∂̄2Wm+1/2,k+1

+∂2Wm−1/2,k −
∑
l,r

{
∂Wl,r · ∂Wm−l−3/2,k−r + ∂Wl+1/2,r · ∂Wm−l−2,k−r

+∂̄Wl+1/2,r · ∂̄Wm−l−1,k−r+1 + ∂̄Wl,r · ∂̄Wm−l−1/2,k−r+1

}
.
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Rotating ideal Bose gases

Good approximation for weakly-interacting dilute gases
Bose-Einstein condensates usually realized in harmonic
magneto-optical traps
Fast-rotating Bose-Einstein condensates extensively studied
- one of the hallmarks of a superfluid is its response to
rotation
Paris group (J. Dalibard) has recently realized critically
rotating BEC of 3 · 105 atoms of 87Rb in an axially
symmetric trap - we model this experiment
The small quartic anharmonicity in x− y plane was used to
keep the condensate trapped even at the critical rotation
frequency [PRL 92, 050403 (2004)]
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Path integrals without integrals

Using the large number of energy eigenvalues and
eigenvectors of one-particle states, calculated by the exact
diagonalization of the evolution operator, we study global
and local properties of condensates
VBEC = M

2 (ω2
⊥−Ω2)r2

⊥+ M
2 ω

2
zz

2 + kBEC
4 r4

⊥, ω⊥ = 2π× 64.8
Hz, ωz = 2π × 11.0 Hz, kBEC = 2.6× 10−11 Jm−4

Typical values of the dimensionless inverse temperature
βeff = ~ω⊥/kBT . 0.1 represent already short (imaginary)
times of propagation
Hence, one-time-step (analytic) approximation to the
calculation of BEC properties in the path integral
formalism can be applied
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Condensation temperature (1)
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Tc of a condensate in an anharmonic trap for different rotation
frequencies r = Ω/ω⊥, obtained with p = 21 effective action. SC
calculation: S. Kling and A. Pelster, PRA 76, 023609 (2007).
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Condensation temperature (2)
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Relative error of SC approximation for Tc of a condensate in an
anharmonic trap for different rotation frequencies r = Ω/ω⊥.
Numerical results are obtained with p = 21 effective action.
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Density profiles and time-of-flight graphs (1)

Density profile is given in terms of the diagonal two-point
propagator n(r) = ρ(r, r) = 〈Ψ̂†(r)Ψ̂(r)〉, and for the ideal
Bose gas

n(r) = N0|ψ0(r)|2 +
∑
n≥1

Nn|ψn(r)|2

In typical BEC experiments, a trapping potential is
switched off and gas is allowed to expand freely during a
short time of flight t (of the order of 10 ms)

n(r, t) = N0|ψ0(r, t)|2 +
∑
n≥1

Nn|ψn(r, t)|2

where

ψn(r, t) =
∫
d3k d3R

(2π)3
e−iωkt+ik·r−ik·R ψn(R)
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Density profiles and time-of-flight graphs (2)

(Loading diag-d025-L400-r105eps02beta0311.mpg)

Evolution of the x− y density profile of over-critically rotating
(Ω/ω⊥ = 1.05) condensate at T = 10 nK < Tc = 55.3 nK. The
linear size of the profile is 54 µm.
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Conclusions

New method for numerical calculation of path integrals for
a general non-relativistic many-body quantum theory
In the numerical approach, discretized effective actions of
level p provide substantial speedup of Monte Carlo
algorithm from 1/N to 1/Np

If the time of propagation/inverse temperature is small,
analytic one-time-step approximation can be used: path
integrals without integrals
The derived results used to study properties of quantum
systems by numerical diagonalization of the space-
discretized evolution operator
Numerical study of properties of (fast-rotating) ideal
Bose-Einstein condensates

Condensation temperature and ground-state occupancy
Density profiles and time-of-flight graphs
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