

Marija Mitrović

Introduction and motivation

Model of multiscale networks

Maximum likelihood

Results

Spectral analysis of adjacency

Conclusion

Future wor

Network of networks: modeling modularity of real-world

Marija Mitrović

Scientific Computing Laboratory Institute of Physics, Belgrade, Serbia

Seminar: Institute Jožef Stefan

Outline

Marija Mitrovi

Introduction and motivatio

multiscale networks

likelihood method

Result

Spectral analysis o adjacency matrix

Conclusion

Future work

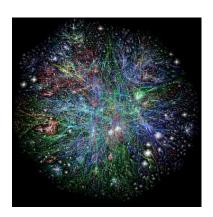
- Introduction and motivation
- 2 Model of multiscale networks
- Maximum likelihood method
- Results
- 5 Spectral analysis of adjacency matrix
- 6 Conclusion
- Future work

Why are networks interesting?

Marija Mitrovid

Introduction and motivation

Model of multiscale networks


Maximur likelihood method

Result

Spectral analysis o adjacency matrix

Conclusion

Future wor

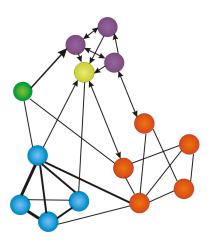
- Complex networks natural models for a variety of systems
- Exploration of new phenomena on networks

What is a network?

Marija Mitrovio

Introduction and motivation

Model of multiscale networks


Maximun likelihood method

Results

Spectral analysis of adjacency matrix

Conclusio

Future work

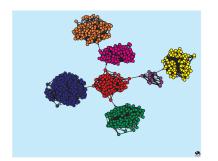
- Network-set of vertices and edges
- Networks:
 - undirected
 - directed
 - unweighted
 - weighted
- Network in physics graph in mathematics

Multiscale structure

Marija Mitrovi

Introduction and motivation

Model of multiscale networks


Maximum likelihood method

Results

Spectral analysis o adjacency matrix

Conclusion

Future wor

- New ways for classifying and modeling networks
- Communities or modules on networks
- Models of networks with multiscale structure

Search for subgraphs in networks

Marija Mitrovi

Introduction and motivation

Model of multiscale networks

Maximum likelihood method

Result

Spectral analysis of adjacency matrix

Conclusion

Future work

Community detection methods:

- Maximum-cut-minima flow
- Maximization of modularity
- Maximum likelihood method:
 - Fitting mixture model to observed data using expectation-maximization algorithm
 - Result split of network in substructures (modules)
 - Generalization of method for finding weighted subgraphs

Network of networks

Marija Mitrović

Introduction and motivatio

Model of multiscale networks

Maximum likelihood method

Result

Spectral analysis of adjacency matrix

Conclusio

Future wor

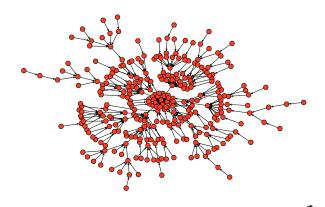
- Models of scale free networks-power law
- Model of World Wide Web-power law, clustered (B.Tadić, Physica A 293,(2001))
- Model of multiscale networks power law, clustered, multisclae structure
- Growing rules:
 - At every time step new node i and M new links are added
 - With probability P_o new group is started
 - With probability α new node is attached to node k, which is chosen with probability p_{in} among nodes with sam group index as i
 - With probability 1α new link attaches node k with node n chosen among all existing nodes with probability p_{out}

Scale free network

Marija Mitrović

Introduction and motivation

Model of multiscale networks


Maximum likelihood method

Results

Spectral analysis of adjacency matrix

Conclusion

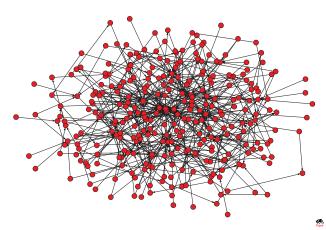
Future worl

Model of World Wide Web

Marija Mitrović

Introduction and motivation

Model of multiscale networks


Maximun likelihood method

Results

Spectral analysis of adjacency matrix

Conclusio

Future work

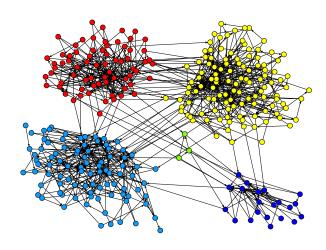
Parameters: $\alpha = 0.85, M = 2, P_0 = 0, N = 300$

Model of multiscale network

Marija Mitrović

Introduction and motivation

Model of multiscale networks


Maximun likelihood method

Result

Spectral analysis of adjacency matrix

Conclusio

Future work

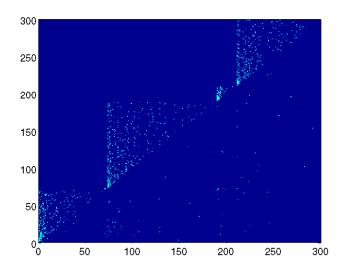
Parameters: $\alpha = 0.9, M = 3, P_0 = 0.015, N = 300$

Adjacency matrix of multiscale network

Marija Mitrović

Introduction and motivation

Model of multiscale networks


Maximum likelihood method

Results

Spectral analysis of adjacency matrix

Conclusion

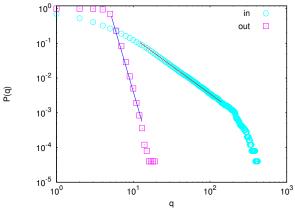
Future worl

Degree distribution

Marija Mitrovi

Introduction and motivation

Model of multiscale networks


Maximun likelihood method

Results

Spectral analysis of adjacency matrix

Conclusion

Future wor

Parameters: $\alpha = 0.9, M = 3, G = 6, N = 25000, \tau_{in} = 2.61, \tau_{out} = 8.6$

Mixture models and likelihood

Marija Mitrovi

Introduction and motivation

Model of multiscale networks

Maximum likelihood method

Result

Spectral analysis o adjacency matrix

Conclusior

uture worl

- Mixture models technique is well known in statistical data analysis
- "Probability" allows us to predict unknown outcomes based on known parameters - "likelihood" allows us to estimate unknown parameters based on known outcomes.
- Maximum likelihood estimation is statistical method used to calculate the best way of fitting a mathematical model to some data
- Algorithms for maximization of likelihood: k-means, expectation-maximization algorithm

Maximization likelihood method

Marija Mitrovi

Introduction and motivation

Model of multiscale networks

Maximum likelihood method

Result

Spectral analysis o adjacency matrix

Conclusion

Future work

- Maximization likelihood method (MLM) suggested by Newman (Newman, M.E.J and Leicht, E.A., PNAS 104, 9564 (2007))
- Network with N vertices is represented with adjacency matrix A
- Network can bi split into c groups, group memberships g_i are hidden data
- Model parameters:
 - θ_{ri} -probability that vertex from group r connects node i
 - π_r -probability that randomly chosen node falls in group r
 - The normalization conditions:

$$\sum_{r} \pi_r = 1, \quad \sum_{i} \theta_{ri} = 1 , \qquad (1)$$

Maximum likelihood method

manja minori

Introduction and motivation

Model of multiscale networks

Maximum likelihood method

Result

Spectral analysis o adjacency matrix

Conclusion

Future wor

• Maximization of likelihood $Pr(A, g|\pi, \theta)$ with respect to π and θ in order to find g_i

Factorization rule

$$Pr(A, g|\pi, \theta) = Pr(A|g, \pi, \theta)Pr(g|\pi, \theta),$$
 (2)

Likelihoods

$$Pr(A|g,\pi, heta) = \prod_{ij} \theta_{g_ij}^{A_{ij}}, \quad Pr(g|\pi, heta) = \prod_i \pi_{g_i}.$$
 (3)

Likelihood for a network

$$Pr(A, g|\pi, \theta) = \prod_{i} \pi_{g_i} \prod_{i} \theta_{g_i, j}^{A_{ij}}.$$
 (4)

Maximum likelihood method

Marija Mitrovi

Introduction and motivation

multiscale networks

Maximum likelihood method

Results

Spectral analysis of adjacency matrix

Conclusion

Future wor

- Numbers g_i are unknown, value of log-likelihood is unknown
- Expected value of log-likelihood

$$\overline{L} = \sum_{ir} q_{ir} [ln\pi_r + \sum_j A_{ij} ln\theta_{g_i,j}]$$
 (5)

• q_{ir} is probability that node *i* belongs to group r

$$q_{ir} = \frac{\pi_r \prod_j \theta_{rj}^{A_{ij}}}{\sum_s \pi_s \prod_i \theta_{si}^{A_{ij}}}$$
(6)

Maximum likelihood method

Marija Mitrovi

Introduction and motivation

Model of multiscale networks

Maximum likelihood method

Results

Spectral analysis o adjacency matrix

Conclusior

Future work

• Result of maximization of \overline{L}

$$\pi_r = \frac{\sum_i q_{ir}}{n}, \quad \theta_{ri} = \frac{\sum_j A_{ji} q_{jr}}{\sum_j q_{out}(j) q_{jr}}$$
 (7)

- Expectation-maximization algorithm:
 - expectation step calculating q_{ir}
 - maximization step calculating π_i and θ_{ri}

Implementation of algorithm

Marija Mitrovi

Introduction and motivatio

Model of multiscale networks

Maximum likelihood method

Results

Spectral analysis of adjacency matrix

Conclusion

Future work

Iterative algorithm

• Initialization of parameters π and θ :

•
$$\pi_i = \frac{1}{c}$$
 and $\theta_{ri} = \frac{1}{N}$ -trivial fixed point

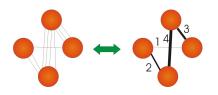
- perturbed randomly a small distance from fixed point
- Calculate probabilities q_{ir}
- We stop when algorithm converges to local maxima of likelihood

MLM for multigraphs

Marija Mitrovid

Introduction and motivation

Model of multiscale networks


Maximum likelihood method

Result

Spectral analysis of adjacency matrix

Conclusion

Future worl

- Weight of link between two nodes can be seen as multiple links between them
- Weighted subgraphs can be seen as set of vertices connected with the strongest links

MLM for multigraphs

Marija Mitrovi

Introduction and motivation

Model of multiscale networks

Maximum likelihood method

Results

Spectral analysis of adjacency matrix

Conclusion

Future work

- W_{ij} is number of multiple links between node i and j
- Formulas for numbers q, π and θ

$$q_{ir} = \frac{\pi_r \prod_j \theta_{rj}^{W_{ij}}}{\sum_s \pi_s \prod_j \theta_{sj}^{W_{ij}}},$$
 (8)

$$\pi_r = \frac{\sum_i q_{ir}}{n}, \quad \theta_{ri} = \frac{\sum_j W_{ji} q_{jr}}{\sum_j s_j q_{jr}}, \quad (9)$$

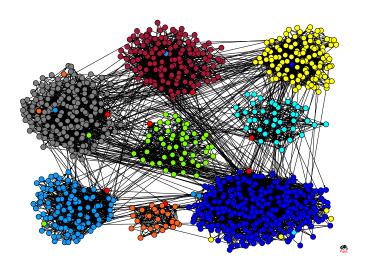
s_i is a strenght of node j

Results-multiscale network

Marija Mitrović

Introduction and motivation

Model of multiscal networks


Maximun likelihood method

Results

Spectral analysis of adjacency matrix

Conclusio

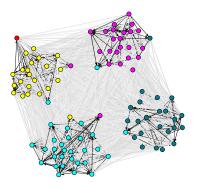
Future work

Results-weighted random graph

Marija Mitrovi

Introduction and motivation

Model of multiscal networks


Maximur likelihood method

Results

Spectral analysis of adjacency matrix

Conclusio

Future wor

 Unweighted Erdos-Renyi(ER) model is homogenous

 Multiple links in ER model multigraph

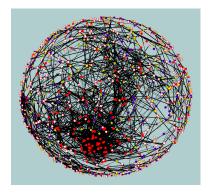
M.Mitrović and B.Tadić, LNCS, (2008)

Results-yeast gene expressions network

Marija Mitrović

Introduction and motivation

Model of multiscale networks


Maximur likelihood method

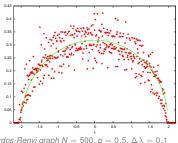
Results

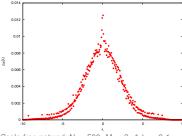
Spectral analysis of adjacency matrix

Conclusion

Future worl

- Network of yeast gene expressions
- Weights of links appear through the correlation coefficient of the gene expressions


Živković, J., Tadić, B., Wick, N., Thurner, S., European Physical Journal B, 255 (2006)


Spectral density of adjacency matrix

8

Spectral analysis of adjacency matrix

Erdos-Renvi graph N = 500, p = 0.5, $\Delta \lambda = 0.1$

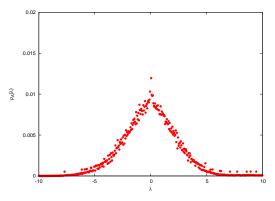
Scale-free network N = 500, M = 3, $\Delta\lambda$ = 0.1

Spectral density of adjacency matrix

Marija Mitrović

Introduction and motivation

Model of multiscale networks


Maximum likelihood

Results

Spectral analysis of adjacency matrix

Conclusion

Future worl

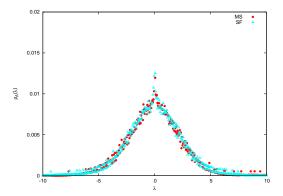
Multiscale network N = $500, \alpha = 0.9, M = 3, G = 5, \Delta\lambda = 0.1$

Spectral density of adjacency matrix

Marija Mitrović

Introduction and motivation

Model of multiscale networks


Maximum likelihood

Results

Spectral analysis of adjacency matrix

Conclusion

Future worl

Conclusion

Marija Mitrovi

Introduction and motivatio

Model of multiscale networks

Maximum likelihood method

Results

Spectral analysis of adjacency matrix

Conclusion

Future wor

- Description of model of multiscale networks
- Maximum likelihood method
- Generalization of MLM for multigraphs
- Spectral density of adjacency matrix

Future work

Marija Mitrovi

Introduction and motivatio

Model of multiscale networks

Maximum likelihood method

Results

Spectral analysis of adjacency matrix

Conclusion

Future work

- Random walks on networks can reveal community structure
- Synchronization processes on complex networks
- Spectra of Laplacian matrix of multiscale networks

Acknowledgments

Marija Mitrović

Introduction and motivation

multiscale networks

Maximun likelihood method

Results

Spectral analysis of adjacency matrix

Conclusion

Future work

This work was done in collaboration with professor Bosiljka Tadić

